THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сети FDDI . Протоколы, история, состояние

В России продолжается процесс интенсивного внедрения новых и модернизации существующих локальных вычислительных сетей (ЛВС). Возрастающие размеры сетей, прикладные программные системы, требующие все больших скоростей обмена информацией, повышающиеся требования к надежности и отказоустойчивости вынуждают искать альтернативу традиционным сетям Ethernet и Arcnet. Один из видов высокоскоростных сетей – FDDI (Fiber Distributed Data Interface – распределенный оптоволоконный интерфейс данных).

Сетевые компьютерные комплексы становятся неотъемлемыми средствами производства любой организации или предприятия. Быстрый доступ к информации, ее достоверность повышают вероятность принятия правильных решений персоналом и, в конечном итоге, вероятность выигрыша в конкурентной борьбе. В своих управляющих и информационных системах фирмы видят средства стратегического превосходства над конкурентами и рассматривают инвестиции в них как капитальные вложения.

В связи с тем, что обработка и пересылка информации с помощью компьютеров становятся все быстрее и эффективнее, происходит настоящий информационный взрыв. ЛВС начинают сливаться в территориально-распределенные сети, увеличивается количество подключенных к ЛВС серверов, рабочих станций и периферийного оборудования.

Сегодня в России компьютерные сети многих крупных предприятий и организаций представляют собой одну или несколько ЛВС, построенных на основе стандартов Arcnet или Ethernet. В качестве сетевой операционной среды обычно применяется NetWare v3.12 или Windows NT с одним или несколькими файловыми серверами. Эти ЛВС либо совсем не имеют связи друг с другом, либо соединяются кабелем, работающим в одном из этих стандартов, через внутренние или внешние программные маршрутизаторы NetWare.

Современные операционные системы и прикладное программное обеспечение требуют для своей работы пересылки больших объемов информации. Одновременно с этим требуется обеспечивать передачу информации с большими скоростями и на большие расстояния. Поэтому рано или поздно производительность сетей Ethernet и программных мостов и маршрутизаторов перестают удовлетворять растущим потребностям пользователей, и они начинают рассматривать возможности применения в своих сетях более скоростных стандартов. Одним из них является FDDI.

Общие сведения.

FDDI (Fiber Distributed Data Interface – Волоконно-оптический интерфейс передачи данных) – стандарт передачи данных в локальной сети, протянутой на расстоянии до 200 километров. На этой территории, сеть FDDI способна поддерживать несколько тысяч пользователей.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Token ring – Технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» – протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр – токен доступа. После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена – Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном, по контрольной сумме), передает его поле данных для последующей обработки протоколу, лежащего выше FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее. При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван сквозным или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, образуя вновь единое кольцо. Этот режим работы сети называется Wrap , то есть «свертывание» или «сворачивание» колец. Операция свертывания производится силами концентраторов и / или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному – по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Поскольку сеть FDDI использует в качестве среды передачи оптоволоконный кабель, то момент разработки технологии во многом оттягивался из-за долгого внедрения оптоволоконных кабелей и устранения ошибок, связанных с новой оптоволоконной технологией.

Еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет. И только в 1980-е годы начались работы по созданию обычных технологий и устройств для использования оптоволоконных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного эталона для локальных сетей были сосредоточены в Американском государственном Институте по Стандартизации – ANSI, в рамках созданного для данной цели комитета X3T9.5.

Начальные версии разных составляющих частей эталона FDDI были разработаны комитетом Х3Т9.5 в 1986–1988 годах, и тогда же возникло первое оборудование – сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот эталон.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Протоколы FDDI

На рисунке приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме – без установления соединений и без восстановления потерянных или поврежденных кадров.

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм.

Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам.

Параметры оптических разъемов MIC (Media Interface Connector), их маркировка.

Длина волны в 1300 нанометров, на которой работают приемопередатчики.

Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

кодирование информации в соответствии со схемой 4B/5B;

правила тактирования сигналов;

требования к стабильности тактовой частоты 125 МГц;

правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

Протокол передачи токена.

Правила захвата и ретрансляции токена.

Формирование кадра.

Правила генерации и распознавания адресов.

Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

Алгоритмы обнаружения ошибок и восстановления после сбоев.

Правила мониторинга работы кольца и станций.

Управление кольцом.

Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC – логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

Состояние.

Разработчики технологии старались воплотить в жизнь следующее:

· Повысить битовую скорость передачи данных до 100 Мб/с;

· Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода – повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

· Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Исходя из этого, преимуществом технологии FDDI является сочетание нескольких очень важных для локальных сетей свойств:

1. высокая степень отказоустойчивости;

2. Способность покрывать значительные территории, вплоть до территорий крупных городов;

3. Высокая скорость обмена данными;

4. Детерминированный доступ, позволяющий передавать чувствительные к задержкам приложения;

5. Гибкий механизм распределения пропускной способности кольца между станциями;

6. Возможность работы при коэффициенте загрузки кольца, близком к единице;

7. Возможность легкой трансляции трафика FDDI в графики таких популярных протоколов, как Ethernet и Token Ring за счет совместимости форматов адресов станций и использования общего подуровня LLC.

Пока FDDI – это единственная технология, которой удалось объединить все перечисленные свойства. В других технологиях эти свойства также встречаются, но не в совокупности. Так, технология Fast Ethernet также обладает скоростью передачи данных 100 Мбит/с, но она не позволяет восстанавливать работу сети после однократного обрыва кабеля и не дает возможности работать при большом коэффициенте загрузки сети (если не принимать во внимание коммутацию Fast Ethernet).

Обычно FDDI применялся для обеспечения быстрого доступа к сетевым серверам.

Методы доступа FDDI и маркерного кольца похожи, поскольку в них для пересылки данных по сети используется передача маркера. Отличие FDDI от стандартного маркерного кольца заключается в применении синхронного метода доступа с передачей маркера. Маркер FDDI перемещается по сетевому кольцу от узла к узлу. Если некоторый узел не имеет данных для передачи, он принимает маркер и пересылает его следующему узлу. Если узел, владеющий маркером, должен передать данные, он может отослать любое нужное количество фреймов в течение фиксированного промежутка времени, называемого временем обращения целевого маркера (TTRT). Поскольку стандарт FDDI использует синхронный метод передачи маркера, в сети в каждый момент времени могут находиться несколько фреймов от нескольких узлов, что обеспечивает высокую скорость передачи данных.

После того как узел передал фрейм, последний перемещается к следующему узлу сетевого кольца. Каждый из узлов определяет, предназначен ли фрейм текущему узлу и имеются ли в этом фрейме ошибки. Если узел является приемником данных, он помечает фрейм как прочитанный. Если какой-нибудь узел обнаруживает ошибку, он устанавливает разряд состояния фрейма, указывая на наличие ошибки. Когда фрейм возвращается к передающему узлу, тот определяет, получил ли целевой узел данный фрейм, а также имелись ли ошибки. В случае наличия ошибок фрейм передается заново. При отсутствии ошибок передающий узел удаляет фрейм из кольца.

Стандарт FDDI допускает два способа передачи пакетов: синхронный и асинхронный. Синхронная передача данных используется для пересылки непрерывной по времени информации: голоса, видео или мультимедиа. Асинхронная передача применяется для обычного сетевого трафика, который не нужно пересылать непрерывными порциями. Для конкретной сети время TTRT равно полному времени, необходимому для синхронной передачи данных от некоторого узла плюс время прохождения фрейма максимальной длины по всему кольцу.

В сети FDDI отслеживаются два типа ошибок: длительные периоды простоя и длительные периоды отсутствия маркера. В первом случае предполагается, что маркер был потерян. Во втором случае допускается, что некоторый узел непрерывно работает на передачу. При любом типе ошибки узел, обнаруживший ее, генерирует последовательность специальных фреймов, называемых исковыми фреймами или фреймами претензий. Исковой фрейм содержит предлагаемое время TTRT. Первый узел прекращает передачу, а следующий узел в кольце сравнивает свое время TTRT со значением, посланным предыдущим узлом. После сравнения он передает меньшее из значений TTRT следующему узлу, записывая это значение в свои исковые фреймы. К тому времени, как информация дойдет до последнего узла, будет выбрано самое маленькое значение TTRT. В этот момент кольцо инициализируется, для чего в него передается маркер и устанавливается новое время TTRT для каждого узла; такое состояние длится до тех пор, пока последний узел не получит новую информацию.

В сети FDDI используются два кольца, так что в случае выхода одного кольца из строя данные могут дойти до целевого узла по другому кольцу. К сети FDDI подключаются узлы двух классов. Узлы Класса А соединены с обоими сетевыми кольцами. Этот класс образует сетевое оборудование, например, концентраторы. Узлы Класса А могут переконфигурировать кольцо так, чтобы в случае отказа сети можно было использовать одно кольцо. Узла Класса В подключаются к сети FDDI через устройства Класса А. К этому классу относятся серверы и рабочие станции.

Итак, мы с вами уже отметили, что технология FDDI во многое взяла за основу от технологии Token Ring , развивая и совершенствуя ее идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

во-первых, - повысить битовую скорость передачи данных до 100 Мбит/с ;

во-вторых, - повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

А также, максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.

Именно наличие двух колец - стало основным способом повышения отказоустойчивости в сети FDDI . Узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. Сейчас мы рассмотрим эту особенность построения сети.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца.

Этот режим назван режимом Thru - "сквозным" или "транзитным" . Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным вновь образуя единое кольцо.

Этот режим работы сети называется Wrap , то есть "свертывание" или "сворачивание" колец.

Операция свертывания производится средствами концентраторов и/или сетевых адаптеров технологии FDDI .

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Итак, давайте рассмотрим в общих чертах работу станций в сети FDDI :

Кольца в сетях FDDI , как и в сетях 802.5 рассматриваются как общая разделяемая среда передачи данных, для нее определен метод доступа, очень близок к методу доступа сетей Token Ring и также называется методом маркерного кольца - token ring .

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - маркер (его еще обычно называют токен) доступа. После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT) .

После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать маркер доступа следующей станции. Если же в момент принятия маркера у станции нет кадров для передачи по сети, то она немедленно транслирует маркер следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Нужно отметить, что, если станция захватила маркер и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре (также как и у кадра Token Ring ) станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее. При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI , этим должны заниматься протоколы более высоких уровней.

Cтруктура протоколов технологии FDDI в проекции на семиуровневую модель OSI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2 . FDDI использует первый тип процедур LLC , при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию.

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов.

При множественных отказах сеть распадается на несколько не связанных сетей.

Технология FDDI дополняет механизмы обнаружения отказов технологии Token Ring механизмами реконфигурации пути передачи данных в сети, основанными на наличии резервных связей, обеспечиваемых вторым кольцом.

Отличия метода доступа FDDI заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в сети Token Ring .

Здесь это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля.

Изменения в методе доступа касаются только асинхронного трафика, который не чувствителен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной.

Механизм приоритетов кадров, который присутствовал в технологии Token Ring , в технологии FDDI отсутствует. Разработчики технологии решили, что деление трафика на 8 уровней приоритетов избыточно и достаточно просто разделить трафик на два класса - асинхронный и синхронный . Синхронный трафик обслуживается всегда, даже при перегрузках кольца.

В остальном пересылка кадров между станциями кольца на уровне MAC , как мы уже рассмотрели, полностью соответствует технологии Token Ring .

Станции FDDI применяют алгоритм раннего освобождения маркера, как и сети Token Ring со скоростью 16 Мбит/с.

Адреса уровня MAC имеют стандартный для технологий IEEE 802 формат .

Формат кадра FDDI также близок к формату кадра Token Ring , основные отличия заключаются в отсутствии полей приоритетов. Признаки распознавания адреса, копирования кадра и ошибки позволяют сохранить имеющиеся в сетях Token Ring процедуры обработки кадров станцией-отправителем, промежуточными станциями и станцией-получателем.

Формат кадра

PA - Преамбула (Preamble): 16 или более пустых символов.

SD - начальный разделитель (Starting Delimiter): последовательность "J" и "K".

FC - Frame Control: 2 символа, отвечающие за тип информации в поле INFO

DA - Адрес получателя (Destination Address): 12 символов, показывающие кому адресован кадр.

SA - Адрес отправителя (Source Address): 12 символов, показывающие адрес отправителя кадра.

INFO - Поле данных (Information Field): 0 до 4478 байтов информации.

FCS - Контрольная сумма (Frame Check Sequence): 8 символов CRC.

ED - Конечный разделитель (Ending Delimiter)

Формат маркера

Таким образом, несмотря на то что технология FDDI была разработана и стандартизована институтом ANSI, а не комитетом IEEE, она полностью вписывается в структуру стандартов 802.

Конечно, все-таки, есть и отличительные особенности стандарта ANSI - технологии FDDI .

Одной такой особенностью является то, что в технологии FDDI выделен еще один уровень управления станцией - Station Management (SMT) .

Именно уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI . В спецификации SMT определено следующее:

Алгоритмы обнаружения ошибок и восстановления после сбоев;

Правила мониторинга работы кольца и станций;

Управление кольцом;

Процедуры инициализации кольца.

В управлении кольцом принимает участие каждый узел сети FDDI . Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью.

Отказоустойчивость сетей FDDI обеспечивается протоколами и других уровней: с помощью физического уровня устраняются отказы сети по физическим причинам, например из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например потеря нужного внутреннего пути передачи маркера и кадров данных между портами концентратора.

Итак, мы с вами рассмотрели самые общие характеристики технологии FDDI . Давайте подробней остановимся именно на отличительных особенностях.

Особенности метода доступа FDDI

Для передачи синхронных кадров станция всегда имеет право захватить маркер при его поступлении. При этом время удержания маркера имеет заранее заданную фиксированную величину.

Если же станции кольца FDDI нужно передать асинхронный кадр (тип кадра определяется протоколами верхних уровней), то для выяснения возможности захвата маркера при его очередном поступлении станция должна измерить интервал времени, который прошел с момента предыдущего прихода маркера.

Этот интервал называется временем оборота маркера (Token Rotation Time, TRT) .

Интервал TRT сравнивается с другой величиной - максимально допустимым временем оборота маркера по кольцу Т_0pr .

Если в технологии Token Ring мы с вами говорили, что максимально допустимое время оборота маркера является фиксированной величиной (2,6 с из расчета 260 станций в кольце), то в технологии FDDI станции договариваются о величине Т_0рr во время инициализации кольца.

Каждая станция может предложить свое значение Т_0рr , в результате для кольца устанавливается минимальное из предложенных станциями времен.

Эта особенность позволяет учитывать потребности тех приложений, которые работают на станциях кольца.

Обычно синхронным приложениям (приложениям реального времени) нужно чаще передавать данные в сеть небольшими порциями, а асинхронным приложениям лучше получать доступ к сети реже, но большими порциями. Предпочтение отдается станциям, передающим синхронный трафик.

Таким образом, при очередном поступлении маркера для передачи асинхронного кадра сравнивается фактическое время оборота маркера TRT с максимально возможным Т_0рr.

Если кольцо не перегружено, то маркер приходит раньше, чем истекает интервал Т_0рr, то есть TRT меньше Т_0рr.

В случае TRT меньше Т_0рr станции разрешается захватить маркер и передать свой кадр (или кадры) в кольцо.

Время удержания маркера ТНТ равно разности T_0pr - TRT

В течение этого времени станция передает в кольцо столько асинхронных кадров, сколько успеет.

Если же кольцо перегружено и маркер опоздал, то интервал TRT будет больше Т_0рr . В этом случае станция не имеет права захватить маркер для асинхронного кадра.

Если все станции в сети хотят передавать только асинхронные кадры, а маркер сделал оборот по кольцу слишком медленно, то все станции пропускают маркер в режиме повторения, маркер быстро делает очередной оборот и на следующем цикле работы станции уже имеют право захватить маркер и передать свои кадры.

Метод доступа FDDI для асинхронного трафика является адаптивным и хорошо регулирует временные перегрузки сети.

Отказоустойчивость технологии FDDI

Для обеспечения отказоустойчивости в стандарте FDDI предусмотрено создание двух оптоволоконных колец - первичного и вторичного . В стандарте FDDI допускаются два вида подсоединения станций к сети.

Одновременное подключение к первичному и вторичному кольцам называется двойным подключением - Dual Attachment, DA . Подключение только к первичному кольцу называется одиночным подключением - Single Attachment, SA .

В стандарте FDDI предусмотрено наличие в сети конечных узлов - станций (Station), а также концентраторов (Concentrator).

Для станций и концентраторов допустим любой вид подключения к сети - как одиночный, так и двойной. Соответственно такие устройства имеют соответствующие названия: SAS (Single Attachment Station), DAS (Dual Attachment Station), SAC (Single Attachment Concentrator) и DAC (Dual Attachment Concentrator).

Обычно концентраторы имеют двойное подключение, а станции - одинарное, хотя это и не обязательно.

Обычно подключаются к кольцу через концентратор. Имеют один порт который работает на прием и на передачу

Чтобы устройства легче было правильно присоединять к сети, их разъемы маркируются.

Разъемы типа А и В должны быть у устройств с двойным подключением, разъем М (Master) имеется у концентратора для одиночного подключения станции, у которой ответный разъем должен иметь тип S (Slave).

DAS обычно подключаются к кольцу через 2 порта A и B , оба имеют возможность принимать и передавать, что позволяет подключаться к двум кольцам.

Концентраторы позволяют SAS и DAS узлам подключаться к двойному FDDI кольцу. Концентраторы имеют М (master) порты для подключения SAS и DAS портов , а также могут сами иметь SAS и DAS порты .

В случае однократного обрыва кабеля между устройствами с двойным подключением сеть FDDI сможет продолжить нормальную работу за счет автоматической реконфигурации внутренних путей передачи кадров между портами концентратора. Двукратный обрыв кабеля приведет к образованию двух изолированных сетей FDDI . При обрыве кабеля, идущего к станции с одиночным подключением, она становится отрезанной от сети, а кольцо продолжает работать за счет реконфигурации внутреннего пути в концентраторе - порт М , к которому была подключена данная станция, будет исключен из общего пути.

Для сохранения работоспособности сети при отключении питания в станциях с двойным подключением, то есть станциях DAS , последние должны быть оснащены оптическими обходными переключателями (Optical Bypass Switch) , которые создают обходной путь для световых потоков при исчезновении питания, которое они получают от станции.

И наконец, станции DAS или концентраторы DAC можно подключать к двум портам М одного или двух концентраторов, создавая древовидную структуру с основными и резервными связями. По умолчанию порт В поддерживает основную связь, а порт А - резервную. Такая конфигурация называется подключением Dual Homing .

Отказоустойчивость поддерживается за счет постоянного слежения уровня SMT концентраторов и станций за временными интервалами циркуляции маркера и кадров, а также за наличием физического соединения между соседними портами в сети.

В сети FDDI нет выделенного активного монитора - все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они начинают процесс повторной инициализации сети, а затем и ее реконфигурации.

Реконфигурация внутренних путей в концентраторах и сетевых адаптерах выполняется специальными оптическими переключателями, которые перенаправляют световой луч и имеют достаточно сложную конструкцию.

На рисунке приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм.

Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам.

Параметры оптических разъемов MIC (Media Interface Connector), их маркировка.

Длина волны в 1300 нанометров, на которой работают приемопередатчики.

Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

кодирование информации в соответствии со схемой 4B/5B;

правила тактирования сигналов;

требования к стабильности тактовой частоты 125 МГц;

правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

Протокол передачи токена.

Правила захвата и ретрансляции токена.

Формирование кадра.

Правила генерации и распознавания адресов.

Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

Алгоритмы обнаружения ошибок и восстановления после сбоев.

Правила мониторинга работы кольца и станций.

Управление кольцом.

Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

Состояние.

Разработчики технологии старались воплотить в жизнь следующее:

· Повысить битовую скорость передачи данных до 100 Мб/с;

· Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

· Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Исходя из этого, преимуществом технологии FDDI является сочетание нескольких очень важных для локальных сетей свойств:

1. высокая степень отказоустойчивости;

2. Способность покрывать значительные территории, вплоть до территорий крупных городов;

3. Высокая скорость обмена данными;

4. Детерминированный доступ, позволяющий передавать чувствительные к задержкам приложения;

5. Гибкий механизм распределения пропускной способности кольца между станциями;

6. Возможность работы при коэффициенте загрузки кольца, близком к единице;

7. Возможность легкой трансляции трафика FDDI в графики таких популярных протоколов, как Ethernet и Token Ring за счет совместимости форматов адресов станций и использования общего подуровня LLC.

Пока FDDI - это единственная технология, которой удалось объединить все перечисленные свойства. В других технологиях эти свойства также встречаются, но не в совокупности. Так, технология Fast Ethernet также обладает скоростью передачи данных 100 Мбит/с, но она не позволяет восстанавливать работу сети после однократного обрыва кабеля и не дает возможности работать при большом коэффициенте загрузки сети (если не принимать во внимание коммутацию Fast Ethernet).

К недостаткам следует отнести один - высокую стоимость оборудования. За уникальное сочетание свойств приходится платить - технология FDDI остается самой дорогой 100-мегабитной технологией. Поэтому ее основные области применения - это магистрали кампусов и зданий, а также подключение корпоративных серверов. В этих случаях затраты оказываются обоснованными - магистраль сети должна быть отказоустойчивой и быстрой, то же относится к серверу, построенному на базе дорогой мультипроцессорной платформы и обслуживающему сотни пользователей. Из-за высокой стоимости оборудования решения на основе FDDI уступают решениям на основе Fast Ethernet при строительстве локальных сетей небольшой протяженности, когда стандарт Fast Ethernet предоставляет оптимальное решение.

Сеть FDDI. Скорость 10 Мбит/с недостаточна для многих современных применений сетей. Поэтому разрабатываются технологии и конкретные реализации высокоскоростных ЛВС.

FDDI (Fiber Distributed Data Interface) - ЛВС кольцевой структуры, использующая ВОЛС и специфический вариант маркерного метода доступа.

В основном варианте сети применено двойное кольцо на ВОЛС. Обеспечивается информационная скорость 100 Мбит/с. Расстояние между крайними узлами до 200 км, между соседними станциями - не более 2 км. Максимальное число узлов 500. В ВОЛС используются волны длиной 1300 нм.

Два кольца ВОЛС используются одновременно. Станции можно подключать к одному из колец или к обоим сразу. Использование конкретным узлом обоих колец позволяет для этого узла иметь суммарную пропускную способность в 200 Мбит/с. Другое возможное использование второго кольца - обход с его помощью поврежденного участка (рис. 4.5).

Рис. 4.5. Кольца ВОЛС в сети FDDI

В FDDI используются оригинальные код и метод доступа. Применяется код типа NRZ (без возвращения к нулю), в котором изменение полярности в очередном такте времени воспринимается как 1, отсутствие изменения полярности как 0. Чтобы код был самосинхронизирующимся, после каждых четырех битов передатчик вырабатывает синхронизирующий перепад.

Такое специальное манчестерское кодирование носит название 4b/5b. Запись 4b/5b означает код, в котором для самосинхронизации при передаче 4 бит двоичного кода используется 5 бит так, что не может быть более двух нулей подряд, или после 4 бит добавляется еще один обязательный перепад, что и используется в FDDI.

При таком коде несколько усложняются блоки кодирования и декодирования, но зато повышается скорость передачи по линии связи, так как почти вдвое уменьшается максимальная частота переключения по сравнению с манчестерским кодом.

В соответствии с методом FDDI по кольцу циркулирует пакет, состоящий из маркера и информационных кадров. Любая станция, готовая к передаче, распознав проходящий через нее пакет, вписывает свой кадр в конец пакета. Она же ликвидирует его после того, как кадр вернется к ней после оборота по кольцу и при условии, что он был воспринят получателем. Если обмен происходит без сбоев, то кадр, возвращающийся к станции-отправителю, оказывается в пакете уже первым, так как все предшествующие кадры должны быть ликвидированы раньше.

Сеть FDDI обычно используется как объединяющая в единую сеть много отдельных подсетей ЛВС. Например, при организации информационной системы крупного предприятия целесообразно иметь ЛВС типа Ethernet или Token Ring в помещениях отдельных проектных подразделений, а связь между подразделениями осуществлять через сеть FDDI.

Fiber Distribution Data Interface или FDDI был создан в середине 80-х годов специально для объединения наиболее важных участков сети. Хотя для рабочей станции скорость передачи данных в 10 Мбит/с была великолепной, то для межсерверных коммуникаций она была явно недостаточна. Исходя из этих потребностей, FDDI был спроектирован для связи между серверами и другими важными участками сети и предусматривал возможность управления процессом передачи и его высокую надежность. Это основная причина из-за который он до сих пор занимает такое заметное место на рынке.

В отличие от Ethernet FDDI использует кольцевую структуру, где устройства объединяются в большое кольцо и передают данные последовательно один другому. Пакет может проследовать больше чем через 100 узлов, прежде чем дойдет до адресата. Но не путайте FDDI с Token Ring! В Token Ring используется только один маркер, который передается от одной машине к другой. FDDI использует другую идею - так называемый временной маркер. Каждая машина посылает данные следующей в течении определенного периода времени, о котором они договариваются заранее когда подключаются к кольцу. Станции могут посылать пакетов одновременно, если позволяет время.

Поскольку другие машины не должны ждать, пока освободится среда передачи, то размер пакета может достигать 20000 байт, хотя большинство использует пакеты размером 4500 байт, всего лишь в три раза больше пакета Ethernet. Тем не менее, если пакет предназначен для рабочей станции, подключенной к кольцу с помощью Ethernet, то его размер не будет превышать 1516 байт.

Одно из самых больших достоинств FDDI - это высокая надежность. Обычно он состоит из двух или более колец. Каждая машина может получать и посылать сообщения своим двум соседям. Это схема позволяет функционировать сети даже если оборвали кабель. Когда кабель порван, устройства на обоих концах разрыва начинают работать как заглушка и система продолжает функционировать как одно кольцо, которое проходит через каждое устройство дважды. Поскольку каждый конкретный путь однонаправлен и устройства передают данные в указанное время, то такая схема полностью исключает коллизии. Это позволяет FDDI достичь практически полной теоретической пропускной способности, которая фактически составляет 99% от теоретически возможной скорости передачи данных. Высокая надежность двойного кольца при условии всего выше сказанного заставляет потребителей продолжать покупать оборудование FDDI.

Принцип действия сети FDDI Сеть FDDI представляет собой волоконно-оптическое маркерное кольцо со скоростью передачи данных 100 Мбит/сек. Стандарт FDDI был разработан комитетом X3T9.5 Американского национального института стандартизации (ANSI). Сети FDDI поддерживается всеми ведущими производителями сетевого оборудования. В настоящее время комитет ANSI X3T9.5 переименован в X3T12. Использование в качестве среды распространения волоконной оптики позволяет существенно расширить полосу пропускания кабеля и увеличить расстояния между сетевыми устройствами. Сравним пропускную способность сетей FDDI и Ethernet при многопользовательском доступе. Допустимый уровень утилизации сети Ethernet лежит в пределах 35% (3.5 Мбит/сек) от максимальной пропускной способности (10 Мбит/сек), в противном случае вероятность возникновения коллизий становится не слишком высокой и пропускная способность кабеля резко снизится. Для сетей FDDI допустимая утилизация может достигать 90-95% (90-95 Мбит/сек). Таким образом, пропускная способность FDDI приблизительно в 25 раз выше. Детерминированная природа протокола FDDI (возможность предсказания максимальной задержки при передаче пакета по сети и возможность обеспечить гарантированную полосу пропускания для каждой из станций) делает его идеальным для использования в сетевых АСУ в реальном времени и в приложениях, критичных ко времени передачи информации (например, для передачи видео и звуковой информации). Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные. Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгоритм кодирования "пять из четырех" - 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунду физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования. Оптимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования. Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими волокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется. Станции, подключенные к сети FDDI, подразделяются на две категории. Станции класса А имеют физические подключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станция); 2. Станции класса B имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами. Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт используется на концентраторе для подключения Single Attached Station через S порт. Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км). Топология. Применяемые при построении ЛВС механизмы контроля потоков являются топологически зависимыми, что делает невозможным одновременное использование Ethernet IEEE 802.x, FDDI ANSI, Token Ring IEEE 802.6 и прочих в пределах единой среды распространения. Несмотря на тот факт, что Fibre Channel в какой-то мере может напоминать столь привычные нам ЛВС, его механизм контроля потоков никак не связан с топологией среды распространения и базируется на совершенно иных принципах. Каждый N_порт при подключении к решетке Fibre Channel проходит через процедуру регистрации (log-in) и получает информацию об адресном пространстве и возможностях всех остальных узлов, на основании чего становится ясно, с кем из них он сможет работать и на каких условиях. А так как механизм контроля потоков в Fibre Channel является прерогативой самой решетки, то для узла совершенно неважно, какая топология лежит в ее основе. Точка-точка Самая простая схема, основанная на последовательном полнодуплексном соединении двух N_портов с взаимоприемлемыми параметрами физического соединения и одинаковыми классами сервиса. Один из узлов получает адрес 0, а другой - 1. В сущности, такая схема может рассматриваться как частный случай кольцевой топологии, где нет необходимости в разграничении доступа путем арбитража. В качестве типичного примера такого подключения можем привести наиболее часто встречающееся соединение сервера с внешним RAID массивом. Петля с арбитражным доступом Классическая схема подключения до 126 портов, с которой все и начиналось, если судить по аббревиатуре FC-AL. Любые два порта в кольце могут обмениваться данными посредством полнодуплексного соединения точно так же, как и в случае "точка-точка". При этом все остальные выполняют роль пассивных повторителей сигналов уровня FC-1 с минимальными задержками, в чем, пожалуй, заключается одно из основных преимуществ технологии FC-AL перед SSA. Дело в том, что адресация в SSA построена на знании количества промежуточных портов между отправителем и получателем, поэтому адресный заголовок кадра SSA содержит счетчик переходов (hop count). Каждый встречающийся на пути кадра порт уменьшает содержимое этого счетчика на единицу и после этого заново генерирует CRC, тем самым существенно увеличивая задержку передачи между портами. Для избежания этого нежелательного эффекта разработчики FC-AL предпочли использовать абсолютную адресацию, что в итоге позволило ретранслировать кадр в неизменном виде и с минимальной латентностью. Передаваемое с целью арбитража слово ARB не понимается и не используется обычными N_портами, поэтому при такой топологии дополнительные свойства узлов обозначаются, как NL_порт. Основным преимуществом петли с арбитражным доступом является низкая себестоимость в пересчете на количество подключенных устройств, поэтому наиболее часто она используется для объединения большого количества жестких дисков с дисковым контроллером. К сожалению, выход их строя любого NL_порта или соединительного кабеля размыкает петлю и делает ее неработоспособной, из-за чего в чистом виде такая схема сейчас уже не считается пер...

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

    Повысить битовую скорость передачи данных до 100 Мб/с.

    Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.

    Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рис. 31), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 31. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рис. 32, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рис. 32, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу (рис. 32, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном, по контрольной сумме), передает его поле данных для последующей обработки протоколу, лежащего выше FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рис. 32, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рис. 32, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

Рис. 32. Обработка кадров станциями кольца FDDI

На рисунке 33 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Рис. 33. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

    Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм.

    Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам.

    Параметры оптических разъемов MIC (Media Interface Connector), их маркировка.

    Длина волны в 1300 нанометров, на которой работают приемопередатчики.

    Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

    кодирование информации в соответствии со схемой 4B/5B;

    правила тактирования сигналов;

    требования к стабильности тактовой частоты 125 МГц;

    правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

    Протокол передачи токена.

    Правила захвата и ретрансляции токена.

    Формирование кадра.

    Правила генерации и распознавания адресов.

    Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

    Алгоритмы обнаружения ошибок и восстановления после сбоев.

    Правила мониторинга работы кольца и станций.

    Управление кольцом.

    Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

В следующей таблице представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.

Характеристика

Ethernet

Token Ring

Битовая скорость

Топология

Двойное кольцо деревьев

Шина/звезда

Звезда/кольцо

Метод доступа

Доля от времени оборота токена

Приоритетная система резервирования

Среда передачи данных

Многомодовое оптоволокно, неэкранированная витая пара

Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно

Экранированная и неэкранированная витая пара, оптоволокно

Максимальная длина сети (без мостов)

200 км (100 км на кольцо)

Максимальное расстояние между узлами

2 км (-11 dB потерь между узлами)

Максимальное количество узлов

500 (1000 соединений)

260 для экранированной витой пары, 72 для неэкранированной витой пары

Тактирование и восстановление после отказов

Распределенная реализация тактирования и восстановления после отказов

Не определены

Активный монитор

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама