THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Лабораторная работа №4

Широтно-импульсная модуляция

Цели работы:

1. Познакомиться со способами получения сигналов с широтно-импульсной модуляцией

2. Познакомиться со способами восстановления постоянного напряжения из сигналов с широтно-импульсной модуляцией

3. Познакомиться с некоторыми примерами применения ШИМ-сигналов

4. Познакомиться с моделированием в среде B2 Spice Workshop поведения схем в частотной области

Импульсный периодический сигнал (рисунок 1) имеет ряд характеристик:

Амплитуда импульса ;

Период (и обратная ему величина – частота );

Длительность импульса ;

Фаза (сдвиг импульса относительно начала периода).

Варьирование всех этих характеристик может быть использовано при обработке измерительных сигналов, а также для передачи данных. Говорят о:

Амплитудной модуляции, если амплитуда импульсов пропорциональна величине входного сигнала;

Частотной модуляции, если частота следования импульсов пропорциональна величине входного сигнала;

Широтно-импульсной модуляции, если длительность импульсов пропорциональна величине входного сигнала;

Фазовой модуляции, если фаза импульсов пропорциональна величине входного сигнала.

Рисунок 1. Характеристики импульсных периодических сигналов

1. Формирование ШИМ-сигнала

В основе метода формирования сигнала с широтно-импульсной модуляцией (ШИМ-сигнала) используется та же идея, что и в АЦП развертывающего типа: на положительный вход устройства сравнения подается преобразуемый постоянный сигнал, на отрицательный вход – линейно изменяющийся во времени сигнал (рисунок 2). Сравнивающее устройство выдает сигнал логического нуля, если опорный линейно изменяющийся сигнал больше преобразуемого, и наоборот.

Очевидно, что время , прошедшее от момента перехода линейно изменяющегося сигнала через ноль и до срабатывания устройства сравнения будет прямо пропорционально величине преобразуемого сигнала и обратно пропорционально крутизне наклона опорного сигнала.

Рисунок 2. Преобразование постоянного сигнала во временной интервал

На практике в качестве устройства сравнения применяется компаратор напряжения, на входы которого подаются преобразуемое напряжение и сигнал с выхода генератора треугольных или пилообразных импульсов (рисунок 3).

Рисунок 3. Преобразование постоянного напряжения в сигнал с ШИМ

Широтно-импульсная модуляция (по своей сути – преобразование напряжение-время) может использоваться как промежуточный этап при переходе от аналоговых к цифровым величинам. Длительность временного промежутка легко измерить, подсчитав число импульсов напряжения стабильной опорной частоты, которое прошло за этот промежуток. Сделать это можно с помощью счетчика, на счетный вход которого поступают импульсы опорной частоты, а на вход разрешения счета – измеряемый импульс (рисунок 4). При этом на выходе счетчика сразу получается цифровой код N, пропорциональный измеряемому напряжению.

Рисунок 4. Преобразование временного интервала в код

В настоящее время для целей аналого-цифрового преобразования ШИМ используется редко. Это объясняется:

Низкой помехоустойчивостью описанного способа преобразования напряжение-время (кратковременная помеха, наведенная на преобразуемый или опорный сигнал, может существенно исказить длительность импульса);

Сравнительно невысоким быстродействием;

Сложностью построения высококачественного генератора опорного линейно изменяющегося сигнала;

Наличием на рынке большого выбора законченных недорогих микросхем АЦП, основанных на иных принципах.

Однако ШИМ вполне может быть использован там, где нет высоких требований к точности и, например, нужно выполнить гальваническую развязку источника и приемника сигнала. В этом случае на стороне источника сигнала ставится простой генератор треугольного или пилообразного напряжения и компаратор. Выход компаратора (ШИМ-сигнал) управляет светодиодом оптрона, а приемная часть оптрона включается на стороне приемника сигнала (рисунок 5). Такой подход часто используется для организации обратной связи в сетевых импульсных блоках питания.

Рисунок 5. Гальваническая развязка аналоговых сигналов с помощью ШИМ. Цепи, расположенные слева и справа от оптрона DA2 не связаны гальванически

На рисунке 6 приведена схема формирования ШИМ-сигнала (файл PWM001.ckt). Источник напряжения V1 представляет собой генератор пилообразного напряжения, источник V3 – источник преобразуемого постоянного напряжения, источник V2 питает компаратор DA1 MAX907 (полную техническую документацию на MAX907 см. в файле MAX907-MAX909.pdf).

Рисунок 6. Формирователь ШИМ-сигнала

Задания.

1. В каком диапазоне входных напряжений V3 может работать данная схема? Какие изменения следует внести в схему, чтобы с её помощью можно было преобразовывать напряжение в диапазоне от –1 до +1 В?

2. Покажите, что в качестве опорных могут с одинаковым успехом использоваться генераторы треугольного и пилообразного напряжения. Какие различия будут у сигналов, сформированных двумя способами?

3. Промоделировав работу схемы во временной области при нескольких разных значениях V3, постройте график зависимости длительности выходных импульсов (коэффициента заполнения) от величины входного постоянного напряжения.

4. Промоделируйте работу для случая, когда V3 представляет собой сумму постоянной составляющей 0,1В и синуса амплитудой 50 мВ с частотой 125кГц. Объясните полученные результаты.

2. Восстановление исходного сигнала из ШИМ-сигнала

Как уже говорилось, одно из применений широтно-импульсной модуляции – это переход от напряжения к длительности импульса с целью последующего измерения этой длительности цифровым способом. Но в том случае, если ШИМ используется только в целях передачи информации о величине напряжения, возникает необходимость восстановить напряжение из ШИМ-сигнала.

Простейший способ – подать напряжение с широтно-импульсной модуляцией на фильтр низкой частоты. При подаче на вход ФНЧ периодического сигнала с периодом на его выходе будет присутствовать постоянная составляющая такого сигнала:

(1)

Если – это ШИМ-сигнал с амплитудой и длительность импульсов , то:

(2)

Таким образом, прямо пропорционально коэффициенту заполнения (отношению длительности импульса к периоду). Однако, в силу того, что реальный ФНЧ частично пропускает и высокочастотные составляющие ШИМ-сигнала, на выходе фильтра будут присутствовать и пульсации (рисунок 7).

Простейшим ФНЧ является RC-цепочка (рисунок 8, файл PWM002.ckt). Она характеризуется постоянной времени и частотой среза . Казалось бы, для улучшения подавления ВЧ составляющих ШИМ-сигнала достаточно уменьшить частоту среза такого ФНЧ, т.е., увеличить постоянную времени . Однако, такое решение дает лишь незначительное уменьшение пульсаций, за которое приходится расплачиваться существенным увеличением переходный процессов при изменении скважности сигнала. (Для ФНЧ 1-го порядка, переходная характеристика достигает 95% конечного значения за время приблизительно равное , 99% – за , 99,9% – за , 99,99% – за ).

Рисунок 7. Фильтрация ШИМ-сигнала идеальным и реальным ФНЧ

Рисунок 8. Выделение постоянной составляющей ШИМ-сигнала с помощью

ФНЧ первого порядка

Более эффективным может быть использование фильтров с той же частотой среза, но более высоких порядков. По сравнению с ФНЧ 1-го порядка такие фильтры имеют более крутой спад частотной характеристики, а значит, обеспечивают и лучшее подавление ВЧ-составляющих. При этом время переходного процесса при изменении скважности ШИМ-сигнала увеличивается незначительно. На рисунке 9 приведена схема с использованием активного ФНЧ Баттерворта 3-го порядка, реализованного на базе операционных усилителей (файл PWM003.ckt). Источник напряжения V1 является источником ШИМ-сигнала, а источники V2 и V3 используются для питания операционных усилителей активного фильтра. (Полную техническую документацию на ОУ MCP604 см. в файле mcp604.pdf).

Рассмотрим, что такое ШИМ или PWM. А также, чем отличается ШИМ от ШИР. Алгоритм широтно-импульсной модуляции применяется для плавного изменения мощности на нагрузке, поступающей от источника питания. Например, с целью регулирования скорости вращения вала двигателя; плавности изменения яркости освещения или подсветки. Отдельной широкой областью применения ШИМ являются импульсные источники питания и автономные инверторы.

Для питания нагрузки часто необходимо изменять величину напряжения, подводимого от источника питания. Принципиально можно выделить два способа регулирования напряжения – линейный и импульсный.

Примером линейного способа может послужить . При этом значительная часть мощности теряется на резисторе. Чем больше разница напряжений источника питания и потребителя, тем ощутимей потери мощности, которая попросту «сгорает» на резисторе, превращаясь в тепло. Поэтому линейный способ регулирования рационально применять только при небольшой разнице входного и выходного напряжений. В противном случае коэффициент полезного действия источника питания в целом будет очень низкий.

В современной преобразовательной технике преимущественно используются импульсное регулирование мощности на нагрузке. Одним из способов реализации импульсного регулирования является широтно-импульсная модуляция ШИМ . В англоязычной литературе PWM – pulse-width modulation .

Принцип импульсного регулирования

Основными элементами любого типа импульсного регулятора мощности являются полупроводниковые ключи – транзисторы или тиристоры. В простейшем виде схема импульсного источника питания имеет следующий вид. Источника постоянного напряжения Uип ключом K подсоединяется к нагрузке Н . Ключ К переключается с определенной частотой и остается во включенном состоянии определенную длительность времени. С целью упрощения схемы я на ней не изображаю другие обязательные элементы. В данном контексте нас интересует только работа ключа К .

Чтобы понять принцип ШИМ воспользуемся следующим графиком. Разобьем ось времени на равные промежутки, называемые периодом T . Теперь, например половину периода мы будем замыкать ключ K . Когда ключ замкнут, к нагрузке Н подается напряжение от источника питания Uип. Вторую часть полупериода ключа находится в закрытом состоянии. А потребитель останется без питания.

Время, в течение которого ключ замкнут, называется временем импульса tи . А время длительности разомкнутого ключа называют временем паузы tп . Если измерить напряжение на нагрузке, то оно будет равно половине Uип .

Среднее значение напряжения на нагрузке можно выразить следующей зависимостью:

Uср.н = Uип tи/T.

Отношение времени импульса к периоду T называют коэффициентом заполнения D . А величина, обратная ему называется скважностью :

S = 1/D = T/tи .

На практике удобнее пользоваться коэффициентом заполнения, который зачастую выражают в процентах. Когда транзистор полностью открыт на протяжении всего времени, то коэффициент заполнения D равен единице или 100 %.

Если D = 50 %, то это означает, что половину времени за период транзистор находится в открытом состоянии, а половину в закрытом. В таком случае форма сигнала называется меандр.
Следовательно, изменяя коэффициент D от 0 до единицы или до 100 % можно изменять величину Uср.н от 0 до Uип:

Uср.н = Uип∙D.

А соответственно регулировать и величину подводимой мощности:

Pср.н = Pип∙D.

В западной литературе практически не различают понятия широтно-импульсного регулирования ШИР и широтно-импульсной модуляции ШИМ. Однако у нас различие между ними все же существует.

Сейчас во многих микросхемах, особенно применяемых в DC-DC преобразователях, реализован принцип ШИР. Но при этом их называют ШИМ контроллерами. Поэтому теперь различие в названии между этими двумя способами практически отсутствует.


В любом случае для формирования определенной длительности импульса, подаваемого на базу транзистора и открывающего последний, применяют источники опорного и задающего напряжения, а также компаратор.
Рассмотрим упрощенную схему, в которой аккумуляторная батарея GB питает потребитель Rн импульсным способом посредством транзистора VT. Сразу скажу, что в данной схеме я специально не использовал такие элементы, необходимые для работы схемы: конденсатор, дроссель и диод. Это сделано с целью упрощения понимания работы ШИМ, а не всего преобразователя.

Упрощенно, компаратор имеет три вывода: два входа и один выход. Компаратор работает следующим образом. Если величина напряжения на входном выводе «+» (неинвертирующий вход) выше, чем на входе «-» (инвертирующий вход), то на выходе компаратора будет сигнал высокого уровня. В противном случае – низкого уровня.

В нашем случае, именно сигнал высокого уровня открывает транзистор VT. Рассмотрим, как формируется необходимая длительность времени импульса tи. Для этого воспользуемся следующим графиком.

При ШИР на одни вход компаратора подается сигнал пилообразной формы заданной частоты. Его еще называют опорным. На второй вход подается задающее напряжение, которое сравнивается с опорным. В результате сравнения на выходе компаратора формируется импульс соответствующей длительности.

Если на неинверитирующем входе компаратора опорный сигнал, то сначала будет идти пауза, а затем импульс. Если на неинвертирующий вход подать задающий сигнал, то сначала будет импульс, затем пауза.

Таким образом, изменяя значение задаваемого сигнала, можно изменять коэффициент заполнения, а соответственно и среднее напряжение на нагрузке.

Частоту опорного сигнала стремятся сделать максимальной, чтобы снизить параметры дросселей и конденсаторов (на схеме не показаны). Последнее приводит к снижению массы и габаритов импульсного блока питания.

ШИМ – широтно-импульсная модуляция

ШИМ в преобладающем большинстве применяется для формирования сигнала синусоидальной формы. Часто ШИМ применяется для управления работой инверторного преобразователя. Инвертор предназначен для преобразования энергии постоянного тока в энергию переменного тока.

Рассмотрим простейшую схему .

В один момент времени открывается пара транзисторов VT1 и VT3. Создается путь для протекания тока от аккумулятора GB через активно-индуктивную нагрузку RнLн. В следующий момент VT1 и VT3 заперты, а открыты диагонально противоположные транзисторы VT2 и VT4. Теперь тока протекает от аккумулятора через RнLн в противоположном направлении. Таким образом, ток на нагрузке изменяет свое направление, поэтому является переменным. Как видно, ток на нагрузке не является синусоидальным. Поэтому применяют ШИМ для получения синусоидально формы тока.

Существует несколько типов ШИМ: однополярная, двухполярная, одностороння, двухсторонняя. Здесь мы не будем останавливаться на каждом конкретном типе, а рассмотрим общий подход.

В качестве модулирующего сигнала применяется синусоида, а опорным является сигнал треугольной формы. В результате сравнивания этих сигналов формируются длительности импульсов и пауз (нижний график), которые управляют работой транзисторов VT1…VT4.

Обратите внимание, что амплитуда напряжения на нагрузке всегда равна амплитуде источника питания. Также остается неизменным период следования импульсов. Изменяется лишь ширина открывающего импульса. Поэтому при подключении нагрузки ток, протекающий через нее, будет иметь синусоидальную форму (показано пунктиром на нижнем графике).

Так вот, основное отличие между ШИР и ШИМ заключается в том, что при широтно-импульсном регулировании время импульса и паузы сохраняют постоянное значение. А при широтно-импульсной модуляции изменяются длительности импульсов и пауз, что позволяет реализовать выходной сигнал заданной формы.

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП - одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер - это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению - это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» - это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция - это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами - за счёт сглаживания.

Вывод: ШИМ-контроллер - устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов - от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T - это период сигнала,

Часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения - 0.25, в процентах - 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного - с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Pпотерь=(Uвх-Uвых)*I

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное - 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

n=Pполезная/Pпотр

n=((12В*1А)/(15В*1А))*100%=(12Вт/15Вт)*100%=80%

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами , которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) - 2 ключа, мостовые - 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей - один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор - первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

Интересно:

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример - 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме - чаще всего 8 выводов, а в еще более культовой - TL494 - 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

    GND - общий вывод соединяется с минусом схемы или с землей.

    Uc (Vc) - питание микросхемы.

    Ucc (Vss, Vcc) - Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

    OUT - как видно из название - это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) - для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы - с одним и двумя выходными выводами соответственно. Это важно.

    Vref - опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

    ILIM - сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

    ILIMREF - на ней устанавливается напряжение срабатывания ножки ILIM

    SS - формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

    RtCt - выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

    CLOCK - тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

    RAMP - это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс - основа для ШИМ-регулирования.

    INV и NONINV - это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV - тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу - GND.

    EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

    TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются . Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 - обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 - обзор

Другой популярной ШИМ является микросхема 3843 - на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Интересно:

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку - дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

Понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

Когда в какой-нибудь литературе мы встречаем незнакомое слово или понятие, мы хотим скорее узнать его определение. Зная точное определение можно дальше проследить сферу использования и методы применения главного действующего лица того или иного понятия. Сегодня мы ближе познакомимся с таким понятием как шим - контроллер.

Понятие шима

Прежде чем дать определение упомянутому словосочетанию, следует узнать или кому-то просто напомнить себе принцип нагревания силовых компонентов радиосхемы. Их сущность заключается в действии нескольких переключательных режимах. Все электросиловые компоненты в подобных радиосхемах всегда пребывают в двух состояниях. Первое - это открытое, а второе раскрытое. В чём разница между этими двумя состояниями? В первом случае компонент обладает нулевым током. Во втором же у компонента нулевое значение напряжения. Конечным результатом взаимодействия электросиловых компонентов с необходимой напряжённостью можно считать получения сигнала той формы, которая нужна согласно установленным правилам.

Шимом же называют специальный модулятор, предназначенный для контролирования времени открытия силового ключа. Время для открытия ключа устанавливается с учётом получаемого напряжения. Получить идеальный вариант сигнала возможно лишь в том случае, если перед преобразованием сигнал без затруднений прошёл все необходимые этапы. Какие это этапы из чего состоит формирование такого сигнала.

Особенности шим - контроллера

Сам процесс создания шим - сигналов очень непростой. Чтобы облегчить этот процесс, были придуманные специальные микросхемы. Именно микросхемы, участвующие в формировании шим - сигналов называют шим - контролёрами. Их существование в большинстве случаев помогает полностью решить проблему с формированием широко — импульсных сигналов. Чтобы легче понять миссию и значимость шим - контролёра, необходимо познакомиться с особенностями его строения. На сегодняшний день известно, что любой шим - контролёр, активно использующийся в электронике, обладает следующими составляющими:

  • Вывод питания. Несёт большую ответственность за электрическое питание всех существующих схем. Нередко вывод питания путают с выводом контроля питания . Важно знать, что несмотря на похожие слова в названии, эти два понятия имеют совершенно разную характеристику. Это ещё раз наглядно докажет знакомство с выводом контроля питания.
  • Вывод контроля питания. Эта составляющая часть микросхемы следит за состоянием показателей напряжения прямо на выводе микросхемы. Главная задача вывода контроля питания - это не допустить превышение расчётной отметки. Существует одна серьёзная опасность, а именно снижения напряжения на выходе. Если напряжения снижено, транзисторы начинают открываться наполовину. Из-за неполного открытия они быстро нагреваются и в конечном счёте могут быстро выйти из строя. Поэтому умеренное напряжение - это залог долгой работы транзисторов микросхемы шим — контроллеров.
  • общий выход. Третий главный элемент схемы имеет форму ножки. Эта ножка, в свою очередь, подключена к общему проводу схемы, которые отвечает за питания всей системы.

Все три составляющих очень важны. Если хотя бы один из элементов по какой-то причине выходит из строя, работа всей микросхемы заметно ухудшается или совершенно прекращается.

Системы управления микросхемами

Важно знать не только из чего состоят микросхемы шим - контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим - контроль принимает активное участие. Вот их некоторые особенности:

А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.

Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.

Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей , нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.

А что можно сказать о «сердце системы». У шима - контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:

  • Низкая стоимость.
  • Стабильная работа.
  • Высокая надёжность.
  • Возможность экономить энергию.
  • высокая эффективность преобразования сигналов.

Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.

  • Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель - это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый - пилообразное напряжение высокой частоты. Второй сигнал - низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала .

Шим - контроллер в импульсных блоках питания

Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:

  • Импульсный блок питания.
  • аналоговые трансформаторные устройства.

В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим - контролёр.

Схема работы импульсного блока питания

Это устройство появилось на свет всего лишь несколько десятилетий назад. Однако уже успело стать популярным и востребованным. Импульсный блок питания состоит из следующих деталей:

  1. Фильтрующего конденсата.
  2. Ключевого силового транзистора.
  3. Сетевого выпрямителя, состоящего из нескольких элементов.
  4. Выпрямительных диодов выходной системы.
  5. Силовой дроссели. Дроссель помогает корректировать возникающее напряжение.
  6. Импульсивного источника питания. Именно отсюда напряжение преобразовывается в силовую цепь.
  7. Цепей управления выходного напряжения.
  8. Накопительной фильтрующей ёмкости;
  9. Оптопара;
  10. Задающего генератора.
  11. схемы обратной связи.

Зная состав импульсного блока, следует ознакомиться с принципом его работы.

Принцип работы импульсного блока

Принцип работы импульсного блока заключается в выдаче стабилизированного питающего напряжения на основе принципа взаимодействия элементов инертной системы. Вот поэтапные шаги, наглядно демонстрирующие всю суть деятельности такого блока питания:

  • Передача сетевого напряжения на выпрямитель (осуществляется при помощи специальных проводов).
  • С помощью фильтра выпрямителя происходит сглаживание напряжения. В этом процессе принимают участие и конденсаторы.
  • с помощь диодного входного моста выпрямляются синусоиды. Далее при участии транзисторной системы проходящие синусоиды должны преобразоваться в высокочастотные импульсы. Зачастую импульсы имеют прямоугольную форму.

Но возникает вопрос, какую роль в импульсном блоке играют шим - контролёры. Мы постараемся дать ответ на него в следующем подзаголовке.

Роль шима - контроллера в работе импульсного блока

Шим - контроллеры играют важную роль в импульсном блоке. Он отвечает за процессы, связанные с широтно — импульсной модуляцией. Шим - контролёр способствует выработке импульсов, у которых одинаковая частота, но в то же время разная длительность включения. Все подаваемые импульсы соответствуют определённой логической единице. У импульсов одинаковая не только частота, но и одинаковая величина амплитуды. Продолжительность функционирования логической единицы может меняться в процессе её работы. Такие перемены помогают наилучшим образом управлять работой электронной системы.

Таким образом, шим - контролёр - одна из важных цепочек, участвующих в работе импульсного блока. В некоторых видах помимо шим - контролёра благополучное функционирование блока питания обеспечивает импульсный трансформатор и специальный каскад силовых ключей.

А в каких сферах используются импульсные блоки питания? В первую очередь, в электронике. Об этом речь пойдёт далее.

Особенности работы микросхемы или как может работать ноутбук

Компьютерный блок питания и роль шим - контролёра в нём Все современные компьютеры, в том числе и ноутбуки, оснащены импульсными блоками питания. Установленные в ноутбуке или в обычном компьютере блоки содержат индивидуальную микросхему шим - контролёра. Стандартной микросхемой считают микросхему TL494CN.

Прежде всего стоит сказать о главной задаче микросхемы TL494CN. Итак, главной задачей схемы является широтно — импульсная модуляция. Другими словами микросхема вырабатывает импульсы напряжения. Одни импульсы регулируемы, другие нет. В микросхеме предусмотренно примерно 6 способов выводов сигналов. Упомянем некоторые интересные подробности каждого вывода микросхемы ноутбука.

Первый вывод. Считается положительным входом усилителя сигнала ошибки. Уровень напряжения на первом выводе оказывает значительное влияние на функционирование последующих выводов. При низком напряжении при втором выводе у выхода усилителя ошибки будут низкие показатели. И напротив, при повышенном напряжении показатели усилителя ошибки повысятся .

Второй вывод. Второй же вывод является напротив отрицательным выходом для усилителя. Здесь показатели напряжения немного по-иному оказывают своё влияние на усилитель. Так, при высоком напряжении (выше чем на первом выводе) у выхода усилителя низкие показатели. В случае низкого напряжения усилитель обладает высокими данными.

Третий вывод. Служит неким контактным звеном. Перемены в уровне напряжения зависят от двух диодов, которыми наделен внутренний усилитель. Во время изменения уровня сигнала хотя бы на одном диоде меняется уровень напряжения всего усилителя. В некоторых случаях третий вывод обеспечивает скорость изменения ширины импульсов.

Четвёртый вывод. Способен управлять диапазон скважности всех выходных импульсов. Уровень поступаемого напряжения в четвёртом выводе влияет на ширину импульсов в микросхеме шим - контролёра.

Пятый вывод. Перед пятым выводом стоит немного другая задача. Он присоединяет врямязадующий конденсатор к заданной микросхеме. Ёмкость присоединённого конденсата оказывает значительное влияние на частоту выходных импульсов шим - контролёра.

Шестой вывод. Служит для подключения времязадающего регистра, который также влияет на частоту.

Все эти шесть выводов способствуют выполнению главной задачи, которая поставлена перед микросхемой шим - контролёра - выход импульсов с широкой модуляцией. А это действие, в свою очередь, влияет на работу импульсного блока, а значит и на работу ноутбука.

Если шим - контролёр выходит из строя

Временами шим - контролёры их схемы и источник питания (в том числе и встроенные в ноутбук) могут ломаться и выходить из строя. В таких случаях понадобится выявить неисправности (в одних случаях проверять необходимо источник питания, в других проверять стоит саму схему). Для этой цели были разработаны мультиметры . Мультиметры тщательно исследуют работоспособность шим - контролёров и при необходимости помогают устранить неисправности. Самыми распространёнными причинами, почему следует проверять эти устройства, считают нестабильную работу платы и изменения показателей напряжения. Если их устранить, техника будет работать.

Регулировать напряжение питания мощных потребителей удобно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество таких регуляторов заключается в том, что выходной транзистор работает в ключевом режиме, а значить имеет два состояния - открытое или закрытое. Известно, что наибольший нагрев транзистора происходит в полуоткрытом состоянии, что приводит к необходимости устанавливать его на радиатор большой площади и спасать его от перегрева.

Предлагаю простую схему ШИМ регулятора. Питается устройство от источника постоянного напряжения 12В. При указанном экземпляре транзистора, выдерживает ток до 10А.

Рассмотрим работу устройства: На транзисторах VT1 и VT2 собран мультивибратор с регулируемой скважностью импульсов. Частота следования импульсов около 7кГц. С коллектора транзистора VT2 импульсы поступают на ключевой транзистор VT3, который управляет нагрузкой. Скважность регулируется переменным резистором R4. При крайнем левом положении движка этого резистора, см. верхнюю диаграмму, импульсы на выходе устройства узкие, что свидетельствует о минимальной выходной мощности регулятора. При крайнем правом положении, см. нижнюю диаграмму, импульсы широкие, регулятор работает на полную мощность.


Диаграмма работы ШИМ в КТ1

С помощью данного регулятора можно управлять бытовыми лампами накаливания на 12 В, двигателем постоянного тока с изолированным корпусом. В случае применения регулятора в автомобиле, где минус соединён с корпусом, подключение следует выполнять через p-n-p транзистор, как показано на рисунке.
Детали: В генераторе могут работать практически любые низкочастотные транзисторы, например КТ315, КТ3102. Ключевой транзистор IRF3205, IRF9530. Транзистор p-n-p П210 заменим на КТ825, при этом нагрузку можно подключать на ток до 20А!

И в заключении следует сказать, что данный регулятор работает в моей машине с двигателем обогрева салона уже более двух лет.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

KTC3198

2 В блокнот
VT3 Полевой транзистор N302AP 1 В блокнот
C1 Электролитический конденсатор 220мкФ 16В 1 В блокнот
C2, C3 Конденсатор 4700 пФ 2 В блокнот
R1, R6 Резистор

4.7 кОм

2 В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

27 кОм

1 В блокнот
R4 Переменный резистор 150 кОм 1 В блокнот
R5 Резистор

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама