THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Отметим, что в ряде случаев мультиколлинеарность не является таким уж серьезным «злом», чтобы прилагать существенные усилия по ее выявлению и устранению. В основном, все зависит от целей исследования.
Если основная задача модели - прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R2(gt; 0,9) наличие мультиколлинеарности обычно не сказывается на прогнозных качествах модели (если в будущем между коррелированными переменными будут сохраняться те же отношения, что и ранее).
Если необходимо определить степень влияния каждой из объясняющих переменных на зависимую переменную, то мультиколлинеарность, приводящая к увеличению стандартных ошибок, скорее всего, исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность является серьезной проблемой.
Единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.
Исключение переменной(ых) из модели
Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных. При применении данного метода необходима определенная осмотрительность. В данной ситуации возможны ошибки спецификации, поэтому в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока мультиколлинеарность не станет серьезной проблемой.
Получение дополнительных данных или новой выборки
Поскольку мультиколлинеарность напрямую зависит от выборки, то, возможно, при другой выборке мультиколлинеарности не будет либо она не будет столь серьезной. Иногда для уменьшения мультиколлинеарности достаточно увеличить объем выборки. Например, при использовании ежегодных данных можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и тем самым увеличивает их статистическую значимость. Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками. Кроме того, такой подход может усилить автокорреляцию. Эти проблемы ограничивают возможность использования данного метода.
Изменение спецификации модели
В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо изменяется форма модели, либо добавляются объясняющие переменные, не учтенные в первоначальной модели, но существенно влияющие на зависимую переменную. Если данный метод имеет основания, то его использование уменьшает сумму квадратов отклонений, тем самым сокращая стандартную ошибку регрессии. Это приводит к уменьшению стандартных ошибок коэффициентов.
Использование предварительной информации о некоторых параметрах
Иногда при построении модели множественной регрессии можно воспользоваться предварительной информацией, в частности известными значениями некоторых коэффициентов регрессии.
Вполне вероятно, что значения коэффициентов, рассчитанные для каких-либо предварительных (обычно более простых) моделей либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.
Отбор наиболее существенных объясняющих переменных. Процедура последовательного присоединения элементов
Переход к меньшему числу объясняющих переменных может уменьшить дублирование информации, доставляемой сильно взаимозависимыми признаками. Именно с этим мы сталкиваемся в случае мультиколлинеарности объясняющих переменных.

36. способы выявления мультиколлиарности. частная корреляция

Наибольшие затруднения в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторных переменных, когда более чем два фактора связаны между собой линейной зависимостью.

Мультиколлинеарностью для линейной множественной регрессии называется наличие линейной зависимости между факторными переменными, включёнными в модель.

Мультиколлинеарность – нарушение одного из основных условий, лежащих в основе построения линейной модели множественной регрессии.

Мультиколлинеарность в матричном виде – это зависимость между столбцами матрицы факторных переменных Х:

Если не учитывать единичный вектор, то размерность данной матрицы равна n*n. Если ранг матрицы Х меньше n, то в модели присутствует полная или строгая мультиколлинеарность. Но на практике полная мультиколлинеарность почти не встречается.

Можно сделать вывод, что одной из основных причин присутствия мультиколлинеарности в модели множественной регрессии является плохая матрица факторных переменных Х.

Чем сильнее мультиколлинеарность факторных переменных, тем менее надежной является оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Включение в модель мультиколлинеарных факторов нежелательно по нескольким причинам:

1) основная гипотеза о незначимости коэффициентов множественной регрессии может подтвердиться, но сама модель регрессии при проверке с помощью F-критерия оказывается значимой, что говорит о завышенной величине коэффициента множественной корреляции;

2) полученные оценки коэффициентов модели множественной регрессии могут быть неоправданно завышены или иметь неправильные знаки;

3) добавление или исключение из исходных данных одного-двух наблюдений оказывает сильное влияние на оценки коэффициентов модели;

4) мультиколлинеарные факторы, включённые в модель множественной регрессии, способны сделать её непригодной для дальнейшего применения.

Конкретных методов обнаружения мультиколлинеарности не существует, а принято применять ряд эмпирических приёмов. В большинстве случаев множественный регрессионный анализ начинается с рассмотрения корреляционной матрицы факторных переменных R или матрицы (ХТХ).

Корреляционной матрицей факторных переменных называется симметричная относительно главной диагонали матрица линейных коэффициентов парной корреляции факторных переменных:

где rij – линейный коэффициент парной корреляции между i-м и j-ым факторными переменными,

На диагонали корреляционной матрицы находятся единицы, потому что коэффициент корреляции факторной переменной с самой собой равен единице.

При рассмотрении данной матрицы с целью выявления мультиколлинеарных факторов руководствуются следующими правилами:

1) если в корреляционной матрице факторных переменных присутствуют коэффициенты парной корреляции по абсолютной величине большие 0,8, то делают вывод, что в данной модели множественной регрессии существует мультиколлинеарность;

2) вычисляют собственные числа корреляционной матрицы факторных переменных λmin и λmax. Если λmin‹10-5, то в модели регрессии присутствует мультиколлинеарность. Если отношение

то также делают вывод о наличии мультиколлинеарных факторных переменных;

3) вычисляют определитель корреляционной матрицы факторных переменных. Если его величина очень мала, то в модели регрессии присутствует мультиколлинеарность.

37. пути решения проблемы мультиколлиарности

Если оцененную модель регрессии предполагается использовать для изучения экономических связей, то устранение мультиколлинеарных факторов является обязательным, потому что их наличие в модели может привести к неправильным знакам коэффициентов регрессии.

При построении прогноза на основе модели регрессии с мультиколлинеарными факторами необходимо оценивать ситуацию по величине ошибки прогноза. Если её величина является удовлетворительной, то модель можно использовать, несмотря на мультиколлинеарность. Если же величина ошибки прогноза большая, то устранение мультиколлинеарных факторов из модели регрессии является одним из методов повышения точности прогноза.

К основным способам устранения мультиколлинеарности в модели множественной регрессии относятся:

1) один из наиболее простых способов устранения мультиколлинеарности состоит в получении дополнительных данных. Однако на практике в некоторых случаях реализация данного метода может быть весьма затруднительна;

2) способ преобразования переменных, например, вместо значений всех переменных, участвующих в модели (и результативной в том числе) можно взять их логарифмы:

lny=β0+β1lnx1+β2lnx2+ε.

Однако данный способ также не способен гарантировать полного устранения мультиколлинеарности факторов;

Если рассмотренные способы не помогли устранить мультиколлинеарность факторов, то переходят к использованию смещённых методов оценки неизвестных параметров модели регрессии, или методов исключения переменных из модели множественной регрессии.

Если ни одну из факторных переменных, включённых в модель множественной регрессии, исключить нельзя, то применяют один из основных смещённых методов оценки коэффициентов модели регрессии – гребневую регрессию или ридж (ridge).

При использовании метода гребневой регрессии ко всем диагональным элементам матрицы (ХТХ) добавляется небольшое число τ: 10-6 ‹ τ ‹ 0.1. Оценивание неизвестных параметров модели множественной регрессии осуществляется по формуле:

где ln – единичная матрица.

Результатом применения гребневой регрессии является уменьшение стандартных ошибок коэффициентов модели множественной регрессии по причине их стабилизации к определённому числу.

Метод главных компонент является одним из основных методов исключения переменных из модели множественной регрессии.

Данный метод используется для исключения или уменьшения мультиколлинеарности факторных переменных модели регрессии. Суть метода заключается в сокращении числа факторных переменных до наиболее существенно влияющих факторов. Это достигается с помощью линейного преобразования всех факторных переменных xi (i=0,…,n) в новые переменные, называемые главными компонентами, т. е. осуществляется переход от матрицы факторных переменных Х к матрице главных компонент F. При этом выдвигается требование, чтобы выделению первой главной компоненты соответствовал максимум общей дисперсии всех факторных переменных xi (i=0,…,n), второй компоненте – максимум оставшейся дисперсии, после того как влияние первой главной компоненты исключается и т. д.

Метод пошагового включения переменных состоит в выборе из всего возможного набора факторных переменных именно те, которые оказывают существенное влияние на результативную переменную.

Метод пошагового включения осуществляется по следующему алгоритму:

1) из всех факторных переменных в модель регрессии включаются те переменные, которым соответствует наибольший модуль линейного коэффициента парной корреляции с результативной переменной;

2) при добавлении в модель регрессии новых факторных переменных проверяется их значимость с помощью F-критерия Фишера. При том выдвигается основная гипотеза о необоснованности включения факторной переменной xk в модель множественной регрессии. Обратная гипотеза состоит в утверждении о целесообразности включения факторной переменной xk в модель множественной регрессии. Критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=1 и k2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров. Наблюдаемое значение F-критерия рассчитывается по формуле:

где q – число уже включённых в модель регрессии факторных переменных.

При проверке основной гипотезы возможны следующие ситуации.

Fнабл›Fкрит, то основная гипотеза о необоснованности включения факторной переменной xk в модель множественной регрессии отвергается. Следовательно, включение данной переменной в модель множественной регрессии является обоснованным.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл≤Fкрит, то основная гипотеза о необоснованности включения факторной переменной xk в модель множественной регрессии принимается. Следовательно, данную факторную переменную можно не включать в модель без ущерба для её качества

3) проверка факторных переменных на значимость осуществляется до тех пор, пока не найдётся хотя бы одна переменная, для которой не выполняется условие Fнабл›Fкрит.

38. фиктивные переменные. Тест чоу

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная - это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.

Фиктивные переменные, будучи экзогенными, не создают каких-либо трудностей при применении ОМНК. Фиктивные переменные являются эффективным инструментом построения регрессионных моделей и проверки гипотез.

Предположим, что на основе собранных данных была построена модель регрессии. Перед исследователем стоит задача о том, стоит ли вводить в полученную модель дополнительные фиктивные переменные или базисная модель является оптимальной. Данная задача решается с помощью метода или теста Чоу. Он применяется в тех ситуациях, когда основную выборочную совокупность можно разделить на части или подвыборки. В этом случае можно проверить предположение о большей эффективности подвыборок по сравнению с общей моделью регрессии.

Будем считать, что общая модель регрессии представляет собой модель регрессии модель без ограничений. Обозначим данную модель через UN . Отдельными подвыборками будем считать частные случаи модели регрессии без ограничений. Обозначим эти частные подвыборки как PR .

Введём следующие обозначения:

PR1 – первая подвыборка;

PR2 – вторая подвыборка;

ESS(PR1) – сумма квадратов остатков для первой подвыборки;

ESS(PR2) – сумма квадратов остатков для второй подвыборки;

ESS(UN) – сумма квадратов остатков для общей модели регрессии.

– сумма квадратов остатков для наблюдений первой подвыборки в общей модели регрессии;

– сумма квадратов остатков для наблюдений второй подвыборки в общей модели регрессии.

Для частных моделей регрессии справедливы следующие неравенства:

Условие (ESS(PR1)+ESS(PR2))= ESS(UN) выполняется только в том случае, если коэффициенты частных моделей регрессии и коэффициенты общей модели регрессии без ограничений будут одинаковы, но на практике такое совпадение встречается очень редко.

Основная гипотеза формулируется как утверждение о том, что качество общей модели регрессии без ограничений лучше качества частных моделей регрессии или подвыборок.

Альтернативная или обратная гипотеза утверждает, что качество общей модели регрессии без ограничений хуже качества частных моделей регрессии или подвыборок

Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.

Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.

а k1=m+1 и k2=n-2m-2 .

Наблюдаемое значение F-критерия рассчитывается по формуле:где ESS(UN)– ESS(PR1)– ESS(PR2) – величина, характеризующая улучшение качества модели регрессии после разделения её на подвыборки;

m – количество факторных переменных (в том числе фиктивных);

n – объём общей выборочной совокупности.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит , то основная гипотеза отклоняется, и качество частных моделей регрессии превосходит качество общей модели регрессии.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл?Fкрит , то основная гипотеза принимается, и разбивать общую регрессию на подвыборки не имеет смысла.

Если осуществляется проверка значимости базисной регрессии или регрессии с ограничениями (restricted regression), то выдвигается основная гипотеза вида:

Справедливость данной гипотезы проверяется с помощью F-критерия Фишера-Снедекора.

Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы свободы k1=m+1 и k2=n–k–1 .

Наблюдаемое значение F-критерия преобразуется к виду:

При проверке выдвинутых гипотез возможны следующие ситуации.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл›Fкрит, то основная гипотеза отклоняется, и в модель регрессии необходимо вводить дополнительные фиктивные переменные, потому что качество модели регрессии с ограничениями выше качества базисной или ограниченной модели регрессии.

Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл?Fкрит , то основная гипотеза принимается, и базисная модель регрессии является удовлетворительной, вводить в модель дополнительные фиктивные переменные не имеет смысла.

39. система одновременных уравнений (эндогенные, экзогенные, лаговые переменные). Экономически значимые примеры систем одновременных уравнений

До сих пор мы рассматривали эконометрические модели, задаваемые уравнениями, выражающими зависимую (объясняемую) переменную через объясняющие переменные. Однако реальные экономические объекты, исследуемые с помощью эко-нометрических методов, приводят к расширению понятия эко-нометрической модели, описываемой системой регрессионных уравнений и тождеств1.

1 В отличие от регрессионных уравнений тождества не содержат подлежащих оценке параметров модели и не включают случайной составляющей.

Особенностью этих систем является то, что каждое из уравнений системы, кроме «своих» объясняющих переменных, может включать объясняемые переменные из других уравнений. Таким образом, мы имеем не одну зависимую переменную, а набор зависимых (объясняемых) переменных, связанных уравнениями системы. Такую систему называют также системой одновременных уравнений, подчеркивая тот факт, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и независимые в других.

Системы одновременных уравнений наиболее полно описывают экономический объект, содержащий множество взаимосвязанных эндогенных (формирующихся внутри функционирования объекта) и экзогенных (задаваемых извне) переменных. При этом в качестве эндогенных и экзогенных могут выступать лаговые (взятые в предыдущий момент времени) переменные.

Классическим примером такой системы является модель спроса Qd и предложения Qs (см. § 9.1), когда спрос на товар определятся его ценой Р и доходом потребителя /, предложение товара - его ценой Р и достигается равновесие между спросом и предложением:

В этой системе экзогенной переменной выступает доход потребителя /, а эндогенными - спрос (предложение) товара Qd = Q» = Q и цена товара (цена равновесия) Р.

В другой модели спроса и предложения в качестве объясняющей предложение Qf переменной может быть не только цена товара Р в данный момент времени /, т.е. Рь но и цена товара в предыдущий момент времени Ptь т.е. лаговая эндогенная переменная:

й"=Р4+Р5^+Рб^-1+Є2.

Обобщая изложенное, можно сказать, что эконометринеская модель позволяет объяснить поведение эндогенных переменных в зависимости от значений экзогенных и лаговых эндогенных переменных (иначе - в зависимости от предопределенных, т.е. заранее определенных, переменных).

Завершая рассмотрение понятия эконометрической модели, следует отметить следующее. Не всякая экономико-математическая модель, представляющая математико-статистическое описание исследуемого экономического объекта, может считаться эконометрической. Она становится эконометрической только в том случае, если будет отражать этот объект на основе характеризующих именно его эмпирических (статистических) данных.

40. косвенный метод наименьших квадратов

Если i -е стохастическое уравнение структурной формы идентифицируемо точно, то параметры этого уравнения (коэффициенты уравнения и дисперсия случайной ошибки) восстанавливаются по параметрам приведенной системы однозначно. Поэтому для оценивания параметров такого уравнения достаточно оценить методом наименьших квадратов коэффициенты каждого из уравнений приведенной формы методом наименьших квадратов (отдельно для каждого уравнения) и получить оценку ковариационной матрицы Q ошибок в приведенной форме, после чего воспользоваться соотношениями ПГ = В и Е = ГТQT , подставляя в них вместо П оцененную матрицу коэффициентов приведенной формы П и оцененную ковариационную матрицу ошибок в приведенной форме £2. Такая процедура называется косвенным методом наименьших квадратов (ILS indirect least squares). Полученные в результате оценки коэффициентов i -го стохастического уравнения структурной формы наследуют свойство состоятельности оценок приведенной формы. Однако они не наследуют таких свойств оценок приведенной формы как несмещенность и эффективность из-за того, что получаются в результате некоторых нелинейных преобразований. Соответственно, при небольшом количестве наблюдений даже у этих естественных оценок может возникать заметное смещение. В связи с этим при рассмотрении различных методов оценивания коэффициентов структурных уравнений в первую очередь заботятся об обеспечении именно состоятельности получаемых оценок.

41. проблемы идентифицируемости систем одновременных уравнений

При правильной спецификации модели задача идентификация системы уравнений сводится к корректной и однозначной оценке ее коэффициентов. Непосредственная оценка коэффициентов уравнения возможна лишь в системах внешне не связанных уравнений, для которых выполняются основные предпосылки построения регрессионной модели, в частности, условие некоррелированности факторных переменных с остатками.

В рекурсивных системах всегда возможно избавление от проблемы коррелированности остатков с факторными переменными путем подстановки в качестве значений факторных переменных не фактических, а модельных значений эндогенных переменных, выступающих в качестве факторных переменных. Процесс идентификации осуществляется следующим образом:

1. Идентифицируется уравнение, в котором в качестве факторных не содержатся эндогенные переменные. Находится расчетное значение эндогенной переменной этого уравнения.

2. Рассматривается следующее уравнение, в котором в качестве факторной включена эндогенная переменная, найденная на предыдущем шаге. Модельные (расчетные) значения этой эндогенной переменной обеспечивают возможность идентификации этого уравнения и т. д.

В системе уравнений в приведенной форме проблема коррелированности факторных переменных с отклонениями не возникает, так как в каждом уравнении в качестве факторных переменных используются лишь предопределенные переменные. Таким образом, при выполнении других предпосылок рекурсивная система всегда идентифицируема.

При рассмотрении системы одновременных уравнений возникает проблема идентификации.

Идентификация в данном случае означает определение возможности однозначного пересчета коэффициентов системы в приведенной форме в структурные коэффициенты .

Структурная модель (7.3) в полном виде содержит параметров, которые необходимо определить. Приведенная форма модели в полном виде содержит параметров. Следовательно, для определения неизвестных параметров структурной модели можно составить уравнений. Такие системы являются неопределенными и параметры структурной модели в общем случае не могут быть однозначно определены.

Чтобы получить единственно возможное решение необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой их взаимосвязи с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Уменьшение числа структурных коэффициентов модели возможно и другими путями: например, путем приравнивания некоторых коэффициентов друг к другу, т. е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково и пр.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

· идентифицируемые;

· неидентифицируемые;

· сверхидентифицируемые.

Модель идентифицируема , если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели.

Модель неидентифицируема , если число коэффициентов приведенной модели меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема , если число коэффициентов приведенной модели больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов нахождения параметров.

Чтобы определить тип структурной модели необходимо каждое ее уравнение проверить на идентифицируемость.

Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель кроме идентифицируемых содержит хотя бы одно сверхидентифицируемое уравнение .

42. трехшаговый метод наименьших квадратов

Наиболее эффективная процедура оценивания систем регрессионных уравнений сочетает метод одновременного оценивания и метод инструментальных переменных. Соответствующий метод называется трехшаговым методом наименьших квадратов. Он заключается в том, что на первом шаге к исходной модели (9.2) применяется обобщенный метод наименьших квадратов с целью устранения корреляции случайных членов. Затем к полученным уравнениям применяется двухшаговый метод наименьших квадратов.

Очевидно, что если случайные члены (9.2) не коррелируют, трехшаговый метод сводится к двухшаговому, в то же время, если матрица В - единичная, трехшаговый метод представляет собой процедуру одновременного оценивания уравнений как внешне не связанных.

Применим трехшаговый метод к рассматриваемой модели (9.24):

ai=19,31; Pi=l,77; а2=19,98; р2=0,05; у=1,4. (6,98) (0,03) (4,82) (0,08) (0,016)

Так как коэффициент р2 незначим, то уравнение зависимости У от X имеет вид:

у =16,98 + 1,4х

Заметим, что оно практически совпадает с уравнением (9.23).

Как известно, очищение уравнения от корреляции случайных членов - процесс итеративный. В соответствии с этим при использовании трехшагового метода компьютерная программа запрашивает число итераций или требуемую точность. Отметим важное свойство трехшагового метода, обеспечивающего его наибольшую эффективность.

При достаточно большом числе итераций оценки трехшагового метода наименьших квадратов совпадают с оценками максимального правдоподобия.

Как известно, оценки максимального правдоподобия на больших выборках являются наилучшими.

43. понятие экономических рядов динамики. Общий вид мультипликативной и аддитивной модели временного ряда.

44. моделирование тенденции временного ряда, сезонных и циклических колебаний.

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

1 ПОДХОД . Расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели: (Т - трендовая компонента, S - сезонная, Е - случайная).

Общий вид мультипликативной модели:

Выбор модели на основе анализа структуры сезонных колебаний (если амплитуда колебаний приблизительно постоянна – аддитивная, если возрастает/уменьшается – мультипликативная).

Построение моделей сводится к расчету значений T,S,E для каждого уровня ряда.

Построение модели:

1.выравнивание исходного ряда методом скользящей средней;

2.расчет значений компоненты S ;

3.Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T+E ) в аддитивной или (T*E ) в мультипликативной модели.

4.Аналитическое выравнивание уровней (T+E ) или (T*E ) и расчет значения Т с использованием полученного уровня тренда.

5.Расчет полученных по модели значений (T+S ) или (T*S ).

6.Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок Е для анализа взаимосвязи исходного ряда и др. временных рядов.

2 ПОДХОД. Построение модели регрессии с включением фактора времени и фиктивных переменных. Количество фиктивных переменных в такой модели должно быть на единицу меньше числа моментов (периодов) времени внутри одного цикла колебаний. Например, при моделировании поквартальных данных модель должна включать четыре независимые переменные – фактор времени и три фиктивные переменные. Каждая фиктивная переменная отражает сезонную (циклическую) компоненту временного ряда для какого-либо одного периода. Она равна единице (1) для данного периода и нулю (0) для всех остальных. Недостаток модели с фиктивными переменными – наличие большого количества переменных.

45. автокорреляционная функция. Ее использование для выявления наличия или отсутствия трендовой и циклической компоненты

Автокорреляция уровней временного ряда .

При наличии во временном ряде тенденции и циклических колебаний каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда .

Количественно автокорреляцию уровней ряда измеряют с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутые на несколько шагов во времени.

Пусть, например, дан временной ряд . Определим коэффициент корреляции между рядами и .

Одна из рабочих формул расчета коэффициента корреляции имеет вид:

И временного ряда, т.е. при лаге 2. Он определяется по формуле:

(4)

Заметим, что с увеличением лага число пар значений, по которым рассчитывается коэффициент корреляции, уменьшается. Обычно лаг не допускается равным числу, превышающему четверть числа наблюдений.

Отметим два важных свойства коэффициентов автокорреляции.

Во-первых, коэффициенты автокорреляции считаются по аналогии с линейным коэффициентом корреляции, т.е. они характеризуют только тесноту линейной связи двух рассматриваемых уровней временного ряда. Поэтому по коэффициенту автокорреляции можно судить только о наличии линейной (или близкой к линейной) тенденции. Для временных рядов, имеющих сильную нелинейную тенденцию (например, экспоненту), коэффициент автокорреляции уровней может приближаться к нулю.

Основные положения

Если регрессоры в модели связаны строгой функциональной зависимостью, то имеет место полная (совершенная) мультиколлинеарность . Данный вид мультиколлинеарности может возникнуть, например, в задаче линейной регрессии, решаемой методом наименьших квадратов , если определитель матрицы будет равен нулю. Полная мультиколлинеарность не позволяет однозначно оценить параметры исходной модели и разделить вклады регрессоров в выходную переменную по результатм наблюдений.

В задачах с реальными данными случай полной мультиколлинеарности встречается крайне редко. Вместо этого в прикладной области часто приходится иметь дело с частичной мультиколлинеарностью , которая характеризуется коэффициентами парной корреляции между регрессорами. В случае частичной мультиколлинеарности матрица будет иметь полный ранг, но ее определитель будет близок к нулю. В этом случае формально можно получить оценки параметров модели и их точностные показатели, но все они будут неустойчивыми.

Среди последствий частичной мультиколлинеарности можно выделить следующие:

  • увеличение дисперсий оценок параметров
  • уменьшение значений t-статистик для параметров, что приводит к неправильному выводу об их статистической значимости
  • получение неустойчивых оценок параметров модели и их дисперсий
  • возможность получения неверного с точки зрения теории знака у оценки параметра

Точные количественные критерии для обнаружения частичной мультиколлинеарности отсутствуют. В качестве признаков ее наличия чаще всего используют следующие:

Методы устранения мультиколлинеарности

Существует два основных подхода к решению этой задачи.

Каким бы образом не осуществлялся отбор факторов, уменьшение их числа приводит к улучшению обусловленности матрицы , а, следовательно, и к повышению качества оценок параметров модели.

Помимо перечисленных методов существует ещё один, более простой, дающий достаточно хорошие результаты - это метод предварительного центрирования . Суть метода сводится к тому, что перед нахождением параметров математической модели проводится центрирование исходных данных: из каждого значения в ряде данных вычитается среднее по ряду: . Эта процедура позволяет так развести гиперплоскости условий МНК, чтобы углы между ними были перпендикулярны. В результате этого оценки модели становятся устойчивыми (Построение многофакторных моделей в условиях мультиколлинеарности).

ВОПРОСЫ НА ЭКЗАМЕН ПО КУРСУ

«ЭКОНОМЕТРИКА (продвинутый уровень)»

1. Модель множественной регрессии. Виды моделей множественной регрессии.

2. Матричная форма записи и матричная формула оценки параметров множественной регрессии.

3. Оценка качества уравнения регрессии. Объясненная и необъясненная составляющие уравнения регрессии.

4. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регрессии.

5. Выборочный множественный коэффициент детерминации и проверка его значимости по -критерию Фишера.

6. Проверка значимости множественного уравнения регрессии с помощью -критерия Фишера.

Значимость уравнения регрессии, т.е. соответствие эконометрической модели Y = a ˆ0 + a ˆ 1X + e фактическим (эмпирическим) данным, позволяет ус-

тановить, пригодно ли уравнение регрессии для практического использования (для анализа и прогноза), или нет.

Для проверки значимости уравнения используется F - критерий Фишера. Он вычисляется по фактическим данным как отношение несмещенной

дисперсии остаточной компоненты к дисперсии исходного ряда. Проверка значимости коэффициента детерминации осуществляется с помощью -критерия Фишера, расчетное значение которого находится по формуле:

,

где коэффициент множественной корреляции, – количество наблюдений, - количество переменных, – диагональный элемент матрицы .

Для проверки гипотезы по таблице определяют табличное значение

критерия Фишера F .

F(α ν1 ν2) – это максимально возможное значение критерия в зависимости от влияния случайных факторов при данных степенях свободы

ν = m1 , ν2 = n m −1, и уровне значимости α . Здесь m – количество аргументов в модели.

Уровень значимости α – вероятность отвергнуть правильную гипотезу, но при условии, что она верна (ошибка первого рода). Обычно α принимается равной 0,05 или 0,01.

Если F ф> F табл, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если наоборт, то гипотеза H0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

7. Оценка значимости линейных коэффициентов корреляции. -критерий Стьюдента.

Для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции рассчитывается t-критерий Стьюдента. Выдвигается гипотеза H 0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Наблюдаемые значения t-критерия рассчитываются по формулам:

, , ,

где – случайные ошибки параметров линейной регрессии и коэффициента корреляции.


Для линейной парной регрессии выполняется равенство , поэтому проверки гипотез о значимости коэффициента регрессии при факторе и коэффициента корреляции равносильны проверке гипотезы о статистической значимости уравнения регрессии в целом.

Вообще, случайные ошибки рассчитываются по формулам:

, , .

где – остаточная дисперсия на одну степень свободы:

.

Табличное (критическое) значение t-статистики находят по таблицам распределения t-Стьюдента при уровне значимости α = 0,05 и числе степеней свободы . Если t табл < t факт, то H 0 отклоняется, т.е. коэффициенты регрессии не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора.

8. Анализ влияния факторов на основе многофакторных регрессионных моделей: коэффициент эластичности ; бета-коэффициент и дельта-коэффициент .

9. Способы расчета параметров , , производственной функции Кобба-Дугласа.

10. Регрессионные уравнения с переменной структурой. Фиктивные переменные. Виды фиктивных переменных. Преимущества использования фиктивных переменных при построении регрессионных моделей.

11. Использование фиктивных переменных для исследования структурных изменений. Моделирование сезонности. Количество бинарных переменных при k градациях.

Понятие мультиколлинеарности. Методы обнаружения и устранения мультиколлинеарности.

Количественная оценка параметров уравнения регрессии предполагает выполнение условия линейной независимости между независимыми переменными. Однако на практике объясняющие переменные часто имеют высокую степень взаимосвязи между собой, что является нарушением указанного условия. Данное явление носит название мультиколлинеарности.

Термин коллинеарность (collinear ) обозначает линейную корреляцию между двумя независимыми переменными, а Мультиколлинеарность (multi-collinear ) – между более чем двумя независимыми переменными. Обыкновенно под мультиколлинеарностью понимают оба случая.

Таким образом, мультиколлинеарность означает наличие тесной линейной зависимости или сильной корреляции между двумя или более объясняющими (независимыми) переменными. Одной из задач эконометрии является выявление мультиколлинеарности между независимыми переменными.

Различают совершенную и несовершенную мультиколлинеарность. Совершенная мультиколлинеарность означает, что вариация одной из независимых переменных может быть полностью объяснена изменением другой (других) переменной.

Иначе, взаимосвязь между ними выражается линейной функцией

Графическая интерпретация данного случая:

Несовершенная мультиколлинеарность может быть определена как линейная функциональная связь между двумя или более независимыми переменными, которая настолько сильна, что может существенно затронуть оценки коэффициентов при переменных в модели.

Несовершенная мультиколлинеарность возникает тогда, когда две (или более) независимые переменные находятся между собой в линейной функциональной зависимости, описываемой уравнением

В отличие от ранее рассмотренного уравнения, данное включает величину стохастической ошибки . Это предполагает, что несмотря на то, что взаимосвязь между и может быть весьма сильной, она не настолько сильна, чтобы полностью объяснить изменение переменной изменением , т.е. существует некоторая необъяснимая вариация.

Графически данный случай представлен следующим образом:


В каких же случаях может возникнуть мультиколлинеарность? Их, по крайней мере, два.

1. Имеет место глобальная тенденция одновременного изменения экономических показателей. В качестве примера можно привести такие показатели как объем производства, доход, потребление, накопление, занятость, инвестиции и т.п., значения которых возрастают в период экономического роста и снижаются в период спада.

Одной из причин мультиколлинеарности является наличие тренда (тенденции) в динамике экономических показателей.

2. Использование лаговых значений переменных в экономических моделях.

В качестве примера можно рассматривать модели, в которых используются как величины дохода текущего периода, так и затраты на потребление предыдущего.

В целом при исследовании экономических процессов и явлений методами эконометрии очень трудно избежать зависимости между показателями.

Последствия мультиколлинеарности сводятся к

1. снижению точности оценивания, которая проявляется через

a. слишком большие ошибки некоторых оценок,

b. высокую степень корреляции между ошибками,

c. Резкое увеличение дисперсии оценок параметров. Данное проявление мультиколлинеарности может также отразиться на получении неожиданного знака при оценках параметров;

2. незначимости оценок параметров некоторых переменных модели благодаря, в первую очередь, наличию их взаимосвязи с другими переменными, а не из-за того, что они не влияют на зависимую переменную. То есть -статистика параметров модели не отвечает уровню значимости ( -критерий Стьюдента не выдерживает проверки на адекватность);

3. сильному повышению чувствительности оценок параметров к размерам совокупности наблюдений. То есть увеличение числа наблюдений существенно может повлиять на величины оценок параметров модели;

4. увеличению доверительных интервалов;

5. повышению чувствительности оценок к изменению спецификации модели (например, к добавлению в модель или исключению из модели переменных, даже несущественно влияющих).

Признаки мультиколлинеарности:

1. когда среди парных коэффициентов корреляции

между объясняющими (независимыми) переменными есть такие, уровень которых либо приближается, либо равен коэффициенту множественной корреляции.

Если в модели более двух независимых переменных, то необходимо более детальное исследование взаимосвязей между переменными. Данная процедура может быть осуществлена с помощью алгоритма Фаррара-Глобера;

2. когда определитель матрицы коэффициентов парной корреляции между независимыми переменными приближается к нулю:

если , то имеет место полная мультиколлинеарность,

если , то мультиколлинеарность отсутствует;

3. если в модели найдено маленькое значение параметра при высоком уровне коэффициента частной детерминации и при этом -критерий существенно отличается от нуля;

Мультиколлинеарность - это коррелированность двух или нескольких объясняющих переменных в уравнении регрессии. Она может быть функциональной (явной) и стохастической (скрытой). При функциональной мультиколлинеарности матрица ХТХ - вырождена и, (ХТХ)-1 не существует, поэтому невозможно определить. Чаще мультиколлинеарность проявляется в стохастической форме, при этом МНК - оценки формально существуют, но обладают рядом недостатков:

  • 1) небольшое изменение исходных данных приводит к существенному изменению оценок регрессии;
  • 2) оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (высокое значение R2);
  • 3) расширяются интервальные оценки коэффициентов, ухудшая их точность;
  • 4) возможно получение неверного знака у коэффициента регрессии.

Обнаружение

Существует несколько признаков, по которым может быть установлено наличие мультиколлинеарности.

Во-первых, анализ корреляционной матрицы парных коэффициентов корреляции:

  • - если имеются пары переменных, имеющих высокие коэффициенты корреляции (> 0,75 - 0,8), говорят о мультиколлинеарности между ними;
  • - если факторы некоррелированы, то det Q = 1, если полная корреляция, то det Q = 0.

Можно проверить Н0: det Q = 1; используя статистический критерий

где n - число наблюдений, m = р+1.

Если, то Н0 отвергается, и мультиколлинеарность доказана.

Во-вторых, определяют множественные коэффициенты детерминации одной из объясняющих переменных и некоторой группой других. Наличие высокого R2 (> 0,6) свидетельствует о мультиколлинеарности.

В третьих, близость к нулю - минимального собственного значения матрицы ХТХ (т.е. решения уравнения) свидетельствует о близости к нулю и det(XTX) и, следовательно, о мультиколлинеарности.

В-четвертых, высокие частные коэффициенты корреляции.

где - алгебраические дополнения элементов матрицы выборочных коэффициентов корреляции. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по рекуррентной формуле:

В-пятых, о присутствии мультиколлинеарности говорят некоторые внешние признаки построенной модели, являющиеся её следствиями. К ним следует отнести такие:

  • · некоторые из оценок имеют неправильные с точки зрения экономической теории знаки или неоправданно большие по абсолютной величине значения;
  • · небольшое изменение исходных статистических данных (добавление или изъятие некоторых наблюдений) приводит к существенному изменению оценок коэффициентов модели, вплоть до изменения их знаков;
  • · большинство или даже все оценки коэффициентов регрессии оказываются статистически незначимыми по t-критерию, в то время как модель в целом является значимой по F-критерию.

Существует и ряд других методов определения мультиколлинеарности.

Если основная задача модели - прогноз будущих значений зависимой переменной, то при достаточно большом коэффициенте детерминации R2 (> 0,9) наличие мультиколлинеарности обычно не сказывается на прогнозных качествах модели. Это утверждение будет обоснованным, если и в будущем между коррелированными переменными сохранятся те же соотношения.

Если целью исследования является определение степени влияния каждой из объясняющих переменных на зависимую переменную, то наличие мультиколлинеарности, приводящее к увеличению стандартных ошибок, скорее всего, исказит истинные зависимости между переменными. В этой ситуации мультиколлинеарность является серьезной проблемой.

Мультиколлинеарность – это коррелированность двух или нескольких переменных в уравнении регрессии. При наличии мультиколлинеарности МНК-оценки формально существуют, но обладают рядом недостатков:

1) небольшое изменение исходных данных приводит к существенному изменению оценок регрессии;

2) оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (индекс детерминации имеет высокое значение).

Главной причиной возникновения мультиколлинеарности является наличие в изучаемом объекте процессов, которые одновременно влияют на некоторые входные переменные, но не учтены в модели. Это может быть результатом некачественного исследования предметной области или сложности взаимосвязей параметров изучаемого объекта.

Различают два вида мультиколлинеарности: полную и частичную.

Например, если в модели объясняющие переменные связаны линейным соотношением , то исходное уравнение сводится к уравнению простой линейной зависимости .

Последнее уравнение не позволяет разделить вклады и в объяснение поведения переменной .

Полная (совершенная) мультиколлинеарность имеет место, когда между переменными имеется линейная функциональная связь.

Частичная (несовершенная) коллинеарность возникает в случае достаточно тесных линейных статистических связей между объясняющими переменными.

Несовершенная мультиколлинеарность факторов характеризуется величиной коэффициента корреляции между ними. Чем больше значение коэффициента корреляции, тем труднее разделить влияние объясняющих переменных и тем менее надежными будут оценки коэффициентов регрессии при этих переменных. Поэтому, если при оценке уравнения регрессии несколько объясняющих переменных оказались незначимыми, то нужно выяснить, нет ли среди них сильно коррелированных между собой. Для этого рассчитывается корреляционная матрица (это предусмотрено стандартными статистическими пакетами), и проверяется статистическая значимость коэффициентов парной корреляции. При наличии сильной корреляции (коэффициент корреляции по абсолютной величине больше 0,7) один из пары связанных между собой факторов исключается или в качестве объясняющей переменной берется какая-то их функция. Если незначимой оказалась только одна переменная, то ее можно исключить или заменить другой.

Для оценки наличия мультиколлинеарности может быть использован определитель матрицы межфакторной корреляции, а значимость мультиколлинеарности факторов может быть оценена с помощью статистики .

В ряде случаев мультиколлинеарность не является таким уж серьезным злом, чтобы ее выявлять и устранять. Все зависит от целей исследования. Если основная задача моделирования – только прогнозирование значений зависимой переменной, то при достаточно большом коэффициенте детерминации () присутствие мультиколлинеарности не сказывается на прогнозных качествах модели. Если же целью моделирования является и определение вклада каждого фактора в изменение зависимой переменной, то наличие мультиколлинеарности является серьезной проблемой.


Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных.

Поскольку мультиколлинеарность напрямую зависит от выборки, то, возможно, при другой выборке мультиколлинеарности не будет вообще либо она не будет столь серьезной. Поэтому для уменьшения мультиколлинеарности в ряде случаев достаточно увеличить объем выборки.

В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо изменяется форма модели, либо добавляются факторы, не учтенные в первоначальной модели, но существенно влияющие на зависимую переменную.

Литература:

1. Елисеева И.И. Эконометрика: учебник. М.: Финансы и статистика, 2008.

2. Бородич С.А. Эконометрика: учебное пособие. Мн.: Новое знание, 2001.

3. Кремер Н.Ш. Эконометрика: учебник для студентов вузов. М.: ЮНИТИ-ДАНА, 2008.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама