THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Вычисление фазового центра гофрированного антенного рупора

Вычисление фазового центра является задачей очень трудоемкой в плане точности. Местоположение фазового центра зависит от многих параметров, таких как направление поляризации, направление угла сканирования и ширина апертуры. Устройством, смоделированным в данном примере, является цилиндрический гофрированный рупор с линейной вертикальной поляризацией.

Для получения точных результатов крайне важны правильные настройки. Поляризация Е-поля совпадает с Е-плоскостью (вертикальная ориентация). На рисунке 2 представлена phi компонента Е-поля в трехмерном представлении. Можно заметить, что данный компонент поля хорошо определен вдоль горизонтального направления, которое представляет в данном случае собою Н-плоскость. Параметры настройки фазового центра, в соответствии с которыми представлено данное изображение, приведены на этом же рисунке слева. Альтернативно, если выбрана Е-плоскость, должен быть выбран компонент thetа Е-поля. Заметьте, что фазовые центры Е и Н-полей отличаются друг от друга.

Рисунок 2 – Настройка направления сканирования поля в Н-плоскости

При расчете постпроцессором CST MWS поля заданного устройства, график фазы может быть построен как в трехмерном формате, так и вдоль определенного направления. Затрачиваемая постпроцессором мощность объясняется тем, что при вычислении учитывается тот факт, что начало координат поля может быть изменено. Эта особенность используется для корректировки и/или установки начальных координат поля в местоположение вычисленного центра фаз. В этом случае изменение фазы будет отображено в двумерном представлении и для определенного угла апертуры. На рисунке 3 представлено, как центр поля установлен в три различные положения – в местоположение фазового центра, а также +/- 5% от полной длины рупора (смещение вдоль оси z).


Рисунок 3 – Три различных местоположения начала координат поля

На рисунке 4 представлены трехмерные графики Е-поля для трех различных местоположений начала координат поля, рассмотренных ранее. На среднем графике изображено наименьшее изменение фазы вдоль горизонтального направления. Более наглядное представление изменение фазы изображено на рисунке 5, на котором фаза представлена вдоль Н-плоскости. Наклон фазы является индикатором того, что было произведено установление центра фазы при моделировании и/или повторное установление антенны в реальной установке измерения.

Рисунок 4 – Слева направо: фазовый центр, сдвинутый на +5%, в центре и на -5%

Рисунок 5 – Изменение фазы вдоль Н-плоскости

Позиция фазового центра меняется согласно рассматриваемому углу апертуры. Чем меньше угол апертуры, тем меньше изменение местоположения фазового центра. Этот факт отображен на рисунке 6. И снова отметьте, что оценка фазового центра в Е и Н плоскости отличаются. Среднеквадратичное отклонение является еще одним критерием точности определения фазового центра (рисунок 7).

Рисунок 6 – Зависимость фазового центра от угла апертуры

Рисунок 7 – Чем меньше угол апертуры, тем меньше среднеквадратичное отклонение

Сравнение теории и практики

На двух различных частотах (+/-2% относительно средней частоты) был произведен расчет фазового центра. Поляризация – в Е-плоскости. Антенна вращается в Н-плоскости (азимутальной). Depending on the phase-slope versus scan angle the antenna is slightly repositioned along its propagation axis and measured again until a flat phase was found. На рисунке 8 представлены фактические местоположения фазовых центров. А на рисунке 9 представлена эта же картина, но в увеличенном виде. Как видно, полученные при моделировании значения достаточно хорошо согласуются с практическими данными.

Рисунок 8 – Фактическое расположение фазовых центров гофрированного рупора

Рисунок 9 – Отклонение теоретических значений от практических; отметьте, что местоположение фазового центра, вычисленного для разных частот - различно

фазовый центр годограф техника вычислений

Ю. И. Чони - к.т.н., доцент, Казанский национальный исследовательский технический университет им. А.Н. Туполева − КАИ
E-mail: [email protected]


Рассмотрены особенности вычисления координат локального фазового центра (ЛФЦ) антенны, порождаемые как долей неоп-ределенности в самом понятии ЛФЦ, так и необходимостью исключить скачки фазы при вычислении обратных тригонометри-ческих функций. Отмечено, что координаты ЛФЦ зависят от направления наблюдения, при изменении которого в общем случае ЛФЦ описывает поверхность в трехмерном пространстве, а в двухмерной ситуации − линию-годограф, зачастую причудливой конфигурации. На примерах кольцевой антенной решетки с кардиоидными индивидуальными диаграммами сопоставлены результаты расчетов для трех разновидностей алгоритмов и продемонстрированы годографы ЛФЦ. Показано, что вычисление ЛФЦ как центра кривизны кривой фазового фронта может приводить к ошибочным результатам, противоречащим физическому смыслу.

Список литературы:

  1. Carter D. Phase centers of microwave antennas // IRE Trans. on Antennas and Propagation. 1956. V. 4. P. 597-600.
  2. Sander S., Cheng D. Phase center of helical beam antennas // IRE Internat. Convention Record. 1958. V. 6. P. 152-157.
  3. Вольперт А.Р. О фазовом центре антенны // Радиотехника. 1961. Т. 16. № 3. С. 3−12.
  4. Muehldorf E.I. The phase center of horn antennas // IEEE Trans. on Antennas and Propagation 1970. V. 18. P. 753-760.
  5. Kildal P.S. Combined E- and H-plane phase centers of antenna feeds // IEEE Trans. on Antennas and Propagation. 1983. V. 31. P. 199-202.
  6. Rao K.S., Shafai L. Phase centre calculation of reflector antenna feeds // IEEE Trans. on Antennas and Propagation. 1984. V. 32. P. 740-742.
  7. Teichman M. Precision phase center measurements of horn antennas // IEEE Trans. on Antennas and Propagation. 1970. V. 18. P. 689-690.
  8. Патент № 1350625 СССР. Способ определения фазового центра антенны / И.Н. Гвоздев, В.В. Иванов, А.В. Соснин, В.П. Чернолес. Опубл. 07.11.1987.
  9. Патент № 1702325 СССР. Способ определения фазового центра антенны / И.А. Винтер, А.С. Паутов. Опубл. 30.12.1991.
  10. Hussein Z.A., Rengarajan S.R. Ground plane effects on quadrifilar helix antenna phase center and radiation characteristics for GPS applications // Antennas and Propagation Society Internat. Symp. Digest. 1991. P. 1594-1597.
  11. Prata A. Misaligned antenna phase-center determination using measured phase patterns // IPN Progress Report 42-150. 2002. P. 1-9.
  12. Akrour B., Santerre R., Geiger A. Calibrating antenna phase centers. A tale of two methods // GPS World. February 2005. P. 49-53. URL: http://www2.unb.ca/gge/Resources/gpsworld.february05.pdf (дата обращения: июль 2017 г.).
  13. Choni Yu.I. Hodograph of antenna’s local phase center: computation and analysis // IEEE Trans. on Antennas and Propagation. 2015. V. 63. P. 2819-2823.
  14. Проценко М.Б., Нестерук С.В. Особенности расчета и анализ местоположения локального фазового центра антенны с эллиптической поляризацией // Наукові праці ОНАЗ ім. О.С. Попова. 2006. № 2. С. 6-10.
  15. Chen A., Su D. The effects of near-field factors on rectangular horn antenna"s phase center // 7th Internat. Symp. Antennas, Propagation & EM Theory. 2006. P. 1-4.
  16. Deboux P., Verdin B., Pichardo S. Calculation of the phase-center offset from 2D antenna radiation patterns // Proc. SPIE 9461. Radar Sensor Technology XIX; Active and Passive Signatures VI, 946102. May, 2015.
  17. Подкорытов А.Н. Математическая модель смещения фазовых центров антенн при высокоточном местоопределении в глобальных навигационных комплексах // Электронный журнал «Труды МАИ». 2012. Вып. 50. URL: http://trudymai.ru/publish¬ed.php?ID=28680.
  18. Zhang C., Lin S. UWB antipodal Vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations // Proc. IEEE Antennas Propagation Soc. Int. Symp. 2007. P. 1973-1976.
  19. Владимиров В.М., Марков В.В., Шепов В.Н. Щелевая полосковая антенна круговой поляризации с дополнительными спиральными щелями в излучателе // Изв. ВУЗов. Физика. 2013. Т. 56. № 8/2. С. 97-101.
  20. Wang X., Yao J., Lu X., Lu W. Research on phase center stability of circularly polarized patch antennas for GPS applications // IEEE 4th Asia-Pacific Conf. Antennas and Propagation (APCAP). 2015. P. 362-365.
  21. Патент № 2326393 РФ. Способ определения положения фазового центра антенны / П.В. Миляев, А.П. Миляев, В.Л. Морев, Ю.Н. Калинин. Опубл. 10.06.2008.
  22. Padilla1 P., Fernandez J.M., Padilla1 J.L., Exposito-Domınguez G., Sierra-Castaner M., Galocha B. Comparison of different methods for the experimental antenna phase center determination using a planar acquisition system. // Progress in Electromagnetics Research. 2013. V. 135. P. 331-346.
  23. Chen Y., Vaughan R.G. Determining the three-dimensional phase center of an antenna // 2014 XXXIth URSI General Assembly and Scien. Symp. 2014. P. 1-4.
  24. Калинин Ю.Н. Измерение координат фазового центра антенны // Антенны. 2014. № 4. С. 54−62.
  25. Хабиров Д.О., Удров М.А. Методика определения координат центра излучения антенны и практические аспекты ее применения // Известия ВУЗов России. Радиоэлектроника. 2015. № 3. C. 30-33.
  26. Чони Ю.И. Синтез антенн по заданной амплитудной диаграмме направленности // Радиотехника и электроника. 1971. Т. 15. № 5. С. 726-734.

Ширина главного лепестка и уровень боковых лепестков

Ширина ДН (главного лепестка) определяет степень концентрации излучаемой электромагнитной энергии. Ширина ДН - это угол между двумя направлениями в пределах главного лепестка, в которых амплитуда напряжённости электромагнитного поля составляет уровень 0,707 от максимального значения (или уровень 0,5 от максимального значения по плотности мощности). Ширина ДН обозначается так:

2и - это ширина ДН по мощности на уровне 0,5;

2и - ширина ДН по напряжённости на уровне 0,707.

Индексом Е или Н обозначают ширину ДН в соответствующей плоскости: 2и, 2и. Уровню 0,5 по мощности соответствует уровень 0,707 по напряжённости поля или уровень - 3 дБ в логарифмическом масштабе:

Экспериментально ширину ДН удобно определять по графику, например, как это показано на рисунке 11.

Рисунок 11

Уровень боковых лепестков ДН определяет степень побочного излучения антенной электромагнитного поля. Он влияет на качество электромагнитной совместимости с ближайшими радиоэлектронными системами.

Относительный уровень бокового лепестка - это отношение амплитуды напряжённости поля в направлении максимума первого бокового лепестка к амплитуде напряжённости поля в направлении максимума главного лепестка (рисунок 12):

Рисунок 12

Выражается этот уровень в абсолютных единицах, либо в децибелах:

Коэффициент направленного действия и коэффициент усиления передающей антенны

Коэффициент направленного действия (КНД) количественно характеризует направленные свойства реальной антенны по сравнению с эталонной ненаправленной (изотропной) с ДН в виде сферы:

КНД - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности П(и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности излучения антенн одинаковы:

С учётом (25) можно получить:

Коэффициент усиления (КУ) антенны - это параметр, который учитывает не только фокусирующие свойства антенны, но и её возможности по преобразованию одного вида энергии в другой.

КУ - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности ПЭ (и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности, подведённые к антеннам, одинаковы.

Коэффициент усиления можно выразить через КНД:

где - коэффициент полезного действия антенны. На практике используют - коэффициент усиления антенны в направлении максимального излучения.

Фазовая диаграмма направленности. Понятие о фазовом центре антенны

Фазовая диаграмма направленности - это зависимость фазы электромагнитного поля, излучаемого антенной, от угловых координат.

Так как в дальней зоне антенны векторы поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к электрической и магнитной составляющей ЭМП, излучаемого антенной. Обозначается фазовая ДН следующим образом: Ш = Ш (и, ц) при r = const.

Если Ш (и, ц) = const при r = const, то это означает, что антенна формирует фазовый фронт волны в виде сферы. Центр этой сферы, в котором находится начало системы координат, называют фазовым центром антенны (ФЦА). Следует отметить, что фазовый центр имеют не все антенны.

У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чёткими нулями между ними, фаза поля в соседних лепестках отличается на р (180°). Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется на рисунке 13.

Рисунок 13 - Амплитудная и фазовая ДН

Направление распространения ЭМВ и положение её фазового фронта в каждой точке пространства взаимно перпендикулярны.

При расчетах в технике высоких частот с применением зеркальных отражающих систем (параболических зеркал) всегда возникает задача поиска фазового центра антенны (ФЦА), т.к. правильная работа зеркала возможна только, если в фокусе находится антенна (именуемая облучатель, feeder, feedhorn) которая имеет фазовый фронт волны в виде сферы, и центр этой сферы находится в фокусе зеркала. При любых отклонениях, как формы фазового фронта от сферы, так и смещения ФЦА из фокуса зеркала - КПД зеркальной системы падает, потому что искажается её диаграмма направленности.

Хотя тема поиска ФЦА довольно актуальна даже в быту, потому что кроме традиционных антенн спутникового телевидения нашли распространение параболические антенны для WiFi, WiMAX и сотовой связи (UMTS/3G, LTE/4G) - тем не менее в литературе такая тема освещена слабо и пользователи часто путают фазовую ДН с обычной диаграммой направленности.

В видеороликах о программах компьютерной симуляции иногда можно встретить практические инструкции как искать ФЦА, но обычно там нет даже минимальных объяснений что ищем и что получаем.

Поэтому чтобы восполнить пробел, напишем небольшую статью с практическими примерами.
Фазовая диаграмма направленности – это зависимость фазы электромагнитного поля, излучаемого антенной, от угловых координат.
(А.П. Пудовкин, Ю.Н. Панасюк, А.А. Иванков - Основы теории антенн )

Так как в дальней зоне антенны векторы поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к электрической и магнитной составляющей ЭМП, излучаемого антенной.
Обозначается фазовая ДН греческой буквой Пси:

Ψ = Ψ (θ, φ) , при r = const.

Если Ψ(θ, φ) = const при r = const, то это означает, что антенна формирует фазовый фронт волны в виде сферы.

Центр этой сферы, в котором находится начало системы координат, называют фазовым центром антенны (ФЦА).

Фазовый центр антенны - это точка, в которую можно поместить одиночный излучатель сферической волны, эквивалентный рассматриваемой антенной системе в отношении фазы создаваемого поля.
(Драбкин А.Л., Зузенко В.Л. Антенно-фидерные устройства )

ФЦА имеют не все антенны. У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чёткими нулями между ними, фаза поля в соседних лепестках отличается на π (180°).

Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется

В реальных антеннах фазовый центр обычно рассматривается в рамках ограниченных углов главного лепестка диаграммы направленности. Положение фазового центра зависит от частоты используемого сигнала, направления излучения/приема антенны, его поляризации и других факторов. Некоторые антенны не имеют фазового центра в общепринятом понимании.

В простейших случаях, например у параболической антенны, фазовый центр совпадает с фокусом параболоида и может быть определен из геометрических соображений. В более сложных случаях, например, рупорных антенн, положение фазового центра не очевидно и требует соответствующих измерений.

Натурные измерения фазового центра очень трудоёмкие (особенно в широкой полосе частот).
В CAD-симуляторах электромагнитных полей вычисление ФЦА это очень простая задача, но она всё же требует несколько ручных манипуляций, т.к. выполняется она «брут-форсом» и требует небольшой начальной настройки функции, которую собираемся брутфорсить.

Для практических расчетов возьмем реальный облучатель парабол для диапазона Ku-band - LNB производителя Inverto, серия Black Ultra.

Этот фидер имеет такой вид (в разрезе)

Шарик размером с горошину - это и будет ФЦА, но мы ещё этого не знаем и наша задача найти его положение.

В примере будем использовать такие вводные:

Частота расчета 11538.5 МГц (длина волны 25.982 мм)
- линейная горизонтальная поляризация (в оси Y)
- сама антенна направлена по оси X, т.е. главное направление излучения θ=90, φ=0

Расчет традиционных параметров дальнего поля (Far Field) в Ansys HFSS дает такую диаграмму направленности в 3D и 2D

Мгновенные значения напряженности (Вольт/метр) электрического поля (E-field) в зависимости от фазы

Интегральная напряженность E-поля (за >1 оборот волны)

Все такие параметры дальнего поля (Far-Field) как при натурных измерениях, так и в CAD-симуляциях - рассчитывается на бесконечной сфере - Infinite Sphere. Испытуемая антенна или её компьютерная модель помещается в центр такой сферы, а измерительный зонд двигается по периметру такой сферы и измеряет амплитуду, поляризацию (амплитуду одного из компонентов) и фазу ЭМ волны. Зонд можно закрепить стационарно и поворачивать испытуемую антенну.

Главное чтобы:

Расстояние всегда было одинаковое (т.е. это была именно измерительная сфера)
- радиус сферы был достаточно большой, чтобы измерения проводились только в той области пространства где векторы электрического поля Е и магнитного H синфазны, т.е. ни одна из компонент не преобладает и не смещена по фазе (не имеет реактивности) за счет носителей заряда которые есть в металлических проводниках антенны или за счет заряженных молекул диэлектрика.

В Ansys HFSS для проведения измерений дальнего поля необходимо создать хотя бы одну бесконечную сферу: Radiation -> Insert Far Field Setup -> Infinite Sphere

φ и θ можно всегда указывать от 0 до 360, но чтобы экономить время на вычислениях иногда рационально ограничить исследуемый угол некоторым сектором. При задании шага 1 градус, полная сфера будет занимать 360*360 = 129 600 расчетных точек, а при шаге 0.1 градус почти 13 млн. Для создания 3D/2D отчетов диаграммы направленности обычно достаточно шага 2-3 градуса (14 400 расчетных точек при шаге 3 градуса). Шаг 1 градус и менее есть смысл использовать только для анализа среза

В закладке «Coordinate System» каждая сфера обязательно имеет свой центр координат. По умолчанию там всегда стоит глобальный центр координат проекта . При желании можно добавлять любое количество других относительных координат. Как элементы геометрии модели так и пользовательскую сферу «Infinite Sphere» можно назначать относительно глобального центра координат или относительно пользовательского. Этим мы воспользуемся ниже.

Расходящийся фазовый фронт волны было видно на анимации Е-поля выше. ЭМ волна образует концентрические круги, подобные кругам на воде от брошенного камня. Фазовый центр это точка, в которую бросили такой камень. Видно что его положение находится где-то в раструбе рупора, но точное его положение не очевидно.

Метод поиска ФЦА базируется на том, что мы смотрим на направление вектора Е-поля (его фазу) по поверхности бесконечно удаленной сферы.

Для демонстрации создадим 2 анимации с векторами Е-поля на сфере с радиусом 4 лямбда (это не бесконечная сфера, но для лучшего масштаба рисунка такого радиуса вполне достаточно).

На первой анимации центр сферы размещен точно в ФЦА

На второй анимации центр размещен в точке проекта 0, 0, 0 (забегая наперед скажем что она находится на 25.06 мм позади ФЦА)

На поверхности первой сферы (она кривая, это не плоскость) видно что векторы движутся синхронно. Амплитуда (magnitude) их разная, потому что ДН антенны имеет максимум в центре (до 14.4 dBi) который плавно угасает в 2 раза (-3 dB) при углах ±20°.

Нас интересует не цвет/длина, а направление вектора. Чтобы все они двигались синхронно (синфазно).

На первой анимации все векторы двигаются синхронно, как бы мяч вращается то вправо то влево.

На второй анимации векторы несинхронны, одни уже изменили направление движения, другие ещё нет. Поверхность этой сферы постоянно претерпевает поверхностные натяжения/деформации.

Первая сфера - находится в ФЦА, вторая не находится в ФЦА.

Задача поиска ФЦА по этому методу состоит в том, чтобы с мелким шагом двигать (брутфорсить) Infinite Sphere до тех пор, пока разброс фаз на интересующем нас участке этой сферы (нас интересует только главный лепесток излучения) станет минимальным (в идеале - нулевой).

Но перед тем как перейти к брутфорсу, сначала разберемся как в HFSS можно отобразить фазовую ДН.

В отчетах дальнего поля «Results -> Create Far Field Report» мы можем вывести или традиционный прямоугольный график (Rectangular plot) или 2D круговой график (Radiation pattern) где по одной оси (например X) вывести зависимость угловой координаты (например θ), а по оси Y - значения фазы на этих углах θ.

Нужный нам отчет это rE - «излученное (radiated) E поле».
Для каждого угла [φ, θ] на бесконечной сфере рассчитывается комплексное число (вектор) электрического поля.

При построении обычных амплитудных графиков (диаграмма направленности, распределение мощности излучения по направлению) нас интересует амплитуда (mag) этого поля, которую можно получить или как mag(rE) или сразу используя более удобную переменную Gain (мощность приведена относительно мощности на порте возбуждения и относительно изотропного излучателя).

При построении фазовой ДН нас интересует мнимая часть комплексного числа (фаза вектора) в полярной нотации (в градусах). Для этого используется математическая функция ang_deg (угол_в_градусах) или cang_deg (накопленный_угол_в_градусах)

Для антенны LNA Inverto Black Ultra, фазовая ДН в плоскости XZ (φ=0) при горизонтальной поляризации возбуждения (rEY) имеет такой вид

Угол Theta=90 это излучение вперёд, Theta=0 вверх, Theta=180 вниз.

Значения ang_deg изменяются от -180 до +180, угол 181° это угол -179°, поэтому график имеет форму пилы при проходе через точки ±180°.

Значения cang_deg накапливаются если направление изменения фазы постоянно. Если фаза сделала до 3 полных оборотов (6 раз пересекла 180°) то накопленное значение достигает 1070°.

Как было написано в начале статьи, фазовая и амплитудная ДН у антенн обычно связаны одна с другой. В соседних амплитудных лепестках (beam) фазы отличаются на 180°.

Наложим один на другой графики фазовой (красный/салатовый) и амплитудной (фиолетовый) ДН

Горбы на амплитудной ДН четко следуют переломам фазы, как и написано в книгах.

Нас интересует фазовый фронт только в определенном секторе пространства, в пределах главного лепестка излучения (остальные лепестки всё равно светят мимо параболического зеркала).

Поэтому ограничим график только сектором 90 ±45° (45-135°).

Добавим на график маркеры MIN (m1) и MAX(m2) которые показывают наибольший разброс фаз в исследуемом секторе.

Кроме того добавим математическую функцию pk2pk() которая автоматически ищет на всём графике минимум и максимум и показывает разницу.

На графике выше разница m2-m1=pk2pk= 3.839 °

Задача поиска ФЦА состоит в том, чтобы двигать с мелким шагом Infinite Sphere пока значение функции pk2pk(cang_deg(rE)) не минимизируется.

Для передвижения Infinite Sphere необходимо создать ещё одну дополнительную систему координат: Modeler -> Coordinate System -> Create -> Relative CS -> Offset

Так как мы заведомо знаем, что у симметричного рупора ФЦА будет находиться на оси Х (Z=Y=0), то для Z и Y ставим 0, а двигать будет только вдоль оси X, для чего присвоим переменную Pos (с начальным значением 0 мм)

Чтобы автоматизировать процесс брут-форса, создадим задачу на оптимизацию.
Optimetrics -> Add -> Parametric , и зададим шаг переменной Pos 1 мм, в диапазоне от 0 до 100 мм

В закладке "Calculations -> Setup Calculation " выберем тип отчета «Far Field» и функцию pk2pk(cang_deg(rEY)). В кнопке «Range Functions» укажем диапазон от -45 до +45 градусов (или любой другой интересующий)

Запускаем ParametricSetup1 -> Analyze .

Расчет выполняется достаточно быстро, т.к. все расчеты дальнего поля относятся к Post-Processing и не требуют повторного решения модели.

После завершения расчета нажимаем ParametricSetup1 -> View analysis results .

Видим четкий минимум при расстоянии X=25mm

Для более высокой точности редактируем параметрический анализ в диапазон 25.0-25.1 мм с шагом 0.01 мм

Получаем четкий минимум на X=25.06 мм

Чтобы визуально оценить где в модели получился ФЦА, можно нарисовать сферы (Non-model) или точки.

Вот в точку X=25.06 мм помещены 2 сферы (радиусом 2 и 4 лямбда)

Вот то же, в анимации

Вот более крупным планом нарисована плоскость и горошина в точке X=25.06

Широко распространено ошибочное мнение, что в HFSS (и других программах, например CST) при наложении графика «3D Plot» на геометрию антенны такой график автоматически помещается в ФЦА.

К сожалению это не так. График 3D всегда накладывается в центр координатной системы, которая были использована при задании «Infinite Sphere» для этого графика. Если использовалась глобальная система координат по умолчанию , то 3D Plot будет размещен в 0,0,0 (даже если сама антенна находится далеко в стороне).

Чтобы совместить графики, в настройках 3D Plot необходимо выбрать такую «Infinite Sphere» (создать ещё одну), для которой задана «Relative CS» в точке ФЦА которую мы нашли вручную.

Следует отметить, что такое наложение будет правдиво только для исследуемого сектора (например главного луча ДН), в боковых и задних лепестках ФЦ может находиться в другом месте или быть несферичным.

Также отметим, что настройки «Infinite Sphere» не имеют никакого отношения к граничному условию «Radiation Boundary». Слой Rad можно задавать как прямоугольник, конус, цилиндр, шар, элипсоид вращения и как угодно двигать его положение, форму и поворот. Положение и форма «Infinite Sphere» от этого никак не изменится. Это всегда будет сфера (шар) с бесконечным (достаточно большим) радиусом и с центром в заданной координатной системе.

Файл модели LNB_InvertoBlackUltra.aedt для изучения доступен по ссылке.

Точка во внутреннем пространстве антенны, в которую поступает информация об измерениях. Примечаниие В общем случае фазовый центр не совпадает с точкой относимости антенны ни в плане, ни по высоте. Взаимное положение фазового центра и точки… …

Проектирование фазированных антенных решёток - Содержание 1 Введение в теорию 2 Методы расчёта ха … Википедия

Теория фазированных антенных решёток - Содержание 1 Введение в теорию 1.1 КНД … Википедия

ГОСТ 26566-85: Система инструментального захода летательных аппаратов на посадку сантиметрового диапазона волн радиомаячная. Термины и определения - Терминология ГОСТ 26566 85: Система инструментального захода летательных аппаратов на посадку сантиметрового диапазона волн радиомаячная. Термины и определения оригинал документа: 3. Азимутальный радиомаяк системы МЛС Азимутальный радиомаяк… …

АНТЕННА - (от лат. antenna мачта, рей), устройство для излучения или приёма радиоволн. А. оптимально преобразует подводимые к ней эл. магн. колебания в излучаемые эл. магн. волны (передающая А.) или, наоборот, преобразует падающие на неё эл. магн. волны в… … Физическая энциклопедия

Радио-антенна - Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

плоскость отсчета системы МЛС - Вертикальная плоскость, проходящая через ось взлетно посадочной полосы или площадки для азимутальных радиомаяков системы МЛС, и горизонтальная плоскость, проходящая через фазовый центр антенны для угломестных радиомаяков системы МЛС. [ГОСТГОСТ… … Справочник технического переводчика

Плоскость отсчета системы МЛС - 35. Плоскость отсчета системы МЛС Reference plane Вертикальная плоскость, проходящая через ось взлетно посадочной полосы или площадки для азимутальных радиомаяков системы МЛС, и горизонтальная плоскость, проходящая через фазовый центр антенны для … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения - Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

ФАЗОВРАЩАТЕЛЬ - устройство, осуществляющее поворот фазы электрич. сигнала. Широко используется в разл. радиотехн. устройствах антенной технике, технике связи, радиоастрономии, измерит. технике и др. (см. также Антенна, Радиоприёмные устройства, Радиопередающие… … Физическая энциклопедия

ГОСТ Р МЭК 61094-3-2001: Государственная система обеспечения единства измерений. Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности - Терминология ГОСТ Р МЭК 61094 3 2001: Государственная система обеспечения единства измерений. Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности оригинал документа:… … Словарь-справочник терминов нормативно-технической документации

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама