THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

(The Internet Key Exchange (IKE)) - Обмен ключами.

  • RFC 2410 (The NULL Encryption Algorithm and Its Use With IPsec) - Нулевой алгоритм шифрования и его использование.
  • RFC 2411 (IP Security Document Roadmap) - Дальнейшее развитие стандарта.
  • RFC 2412 (The OAKLEY Key Determination Protocol) - Проверка соответствия ключа.
  • Архитектура IPsec

    Протоколы IPsec, в отличие от других хорошо известных протоколов SSL и TLS , работают на сетевом уровне (уровень 3 модели OSI). Это делает IPsec более гибким, так что он может использоваться для защиты любых протоколов, базирующихся на TCP и UDP . IPsec может использоваться для обеспечения безопасности между двумя IP-узлами , между двумя шлюзами безопасности или между IP-узлом и шлюзом безопасности. Протокол является "надстройкой" над IP-протоколом, и обрабатывает сформированные IP-пакеты описанным ниже способом. IPsec может обеспечивать целостность и/или конфиденциальность данных передаваемых по сети.

    IPsec использует следующие протоколы для выполнения различных функций:

    • Authentication Header (АН) обеспечивает целостность виртуального соединения (передаваемых данных), аутентификацию источника информации и дополнительную функцию по предотвращению повторной передачи пакетов
    • Encapsulating Security Payload (ESP) может обеспечить конфиденциальность (шифрование) передаваемой информации, ограничение потока конфиденциального трафика. Кроме этого, он может обеспечить целостность виртуального соединения (передаваемых данных), аутентификацию источника информации и дополнительную функцию по предотвращению повторной передачи пакетов (Всякий раз, когда применяется ESP, в обязательном порядке должен использоваться тот или иной набор данных услуг по обеспечению безопасности)
    • Security Association (SA) обеспечивают связку алгоритмов и данных, которые предоставляют параметры, необходимые для работы AH и/или ESP. Internet Security Association and Key Management Protocol (ISAKMP) обеспечивает основу для аутентификации и обмена ключами, проверки подлинности ключей.

    Security Association

    Концепция "Защищенного виртуального соединения" (SA, "Security Association") является фундаментальной в архитектуре IPsec. SA представляет собой симплексное соединение , которое формируется для транспортирования по нему соответствующего трафика. При реализации услуг безопасности формируется SA на основе использования протоколов AH или ESP (либо обоих одновременно). SA определен в соответствии с концепцией межтерминального соединения (point-to-point) и может функционировать в двух режимах: транспортный режим (РТР) и режим тунелирования (РТУ). Транспортный режим реализуется при SA между двумя IP-узлами. В режиме туннелирования SA формирует IP-туннель .

    Все SA хранятся в базе данных SADB (Security Associations Database) IPsec-модуля. Каждое SA имеет уникальный маркер, состоящий из трех элементов:

    • индекса параметра безопасности (SPI)
    • IP-адреса назначения
    • идентификатора протокола безопасности (ESP или AH)

    IPsec-модуль, имея эти три параметра, может отыскать в SADB запись о конкретном SA. В список компонентов SA входят:

    Последовательный номер 32-битовое значение, которое используется для формирования поля Sequence Number в заголовках АН и ESP. Переполнение счетчика порядкового номера Флаг, который сигнализирует о переполнении счетчика последовательного номера. Окно для подавления атак воспроизведения Используется для определения повторной передачи пакетов. Если значение в поле Sequence Number не попадает в заданный диапазон, то пакет уничтожается. Информация AH используемый алгоритм аутентификации, необходимые ключи, время жизни ключей и другие параметры. Информация ESP алгоритмы шифрования и аутентификации, необходимые ключи, параметры инициализации (например, IV), время жизни ключей и другие параметры Режим работы IPsec туннельный или транспортный MTU Максимальный размер пакета, который можно передать по виртуальному каналу без фрагментации.

    Так как защищенные виртуальные соединения(SA) являются симплексными , то для организации дуплексного канала, как минимум, нужны два SA. Помимо этого, каждый протокол (ESP/AH) должен иметь свою собственную SA для каждого направления, то есть, связка AH+ESP требует наличия четырех SA. Все эти данные располагаются в SADB.

    • AH: алгоритм аутентификации.
    • AH: секретный ключ для аутентификации
    • ESP: алгоритм шифрования.
    • ESP: секретный ключ шифрования.
    • ESP: использование аутентификации (да/нет).
    • Параметры для обмена ключами
    • Ограничения маршрутизации
    • IP политика фильтрации

    Помимо базы данных SADB, реализации IPsec поддерживают базу данных SPD (Security Policy Database- База данных политик безопасности). Запись в SPD состоит из набора значений полей IP-заголовка и полей заголовка протокола верхнего уровня. Эти поля называются селекторами. Селекторы используются для фильтрации исходящих пакетов, с целью поставить каждый пакет в соответствие с определенным SA. Когда формируется пакет, сравниваются значения соответствующих полей в пакете (селекторные поля) с теми, которые содержатся SPD. Находятся соответствующие SA. Затем определяется SA (в случае, если оно имеется) для пакета и сопряженный с ней индекс параметров безопасности(SPI). После чего выполняются операции IPsec(операции протокола AH или ESP).

    Примеры селекторов, которые содержатся в SPD:

    • IP-адрес места назначения
    • IP-адрес отправителя
    • Протокол IPsec (AH, ESP или AH+ESP)
    • Порты отправителя и получателя

    Authentication Header

    Authentication Header format
    Offsets Octet 16 0 1 2 3
    Octet 16 Bit 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    0 0 Next Header Payload Len Reserved
    4 32
    8 64 Sequence Number
    C 96 Integrity Check Value (ICV)
    Next Header (8 bits) Тип заголовка протокола, идущего после заголовка AH. По этому полю приемный IP-sec модуль узнает о защищаемом протоколе верхнего уровня. Значения этого поля для разных протоколов можно посмотреть в RFC 1700 . Payload Len (8 bits) Это поле определяет общий размер АН-заголовка в 32-битовых словах, минус 2. Несмотря на это, при использовании IPv6 длина заголовка должна быть кратна 8 байтам. Reserved (16 bits) Зарезервировано. Заполняется нулями. Security Parameters Index (32 bits) Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности (АН-протокол), однозначно определяет защищенное виртуальное соединение(SA) для данного пакета. Диапазон значений SPI 1...255 зарезервирован IANA. Sequence Number (32 bits) Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может отказаться от услуги по защите от повторной передачи пакетов, оно является обязательным и всегда присутствует в AH-заголовке. Передающий IPsec-модуль всегда использует это поле, но получатель может его и не обрабатывать. Integrity Check Value

    Протокол AH используется для аутентификации, то есть для подтверждения того, что мы связываемся именно с тем, с кем предполагаем, и что данные, которые мы получаем, не искажены при передаче.

    Обработка выходных IP-пакетов

    Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает AH-обработку, то он начинает обработку. В зависимости от режима (транспортный или режим туннелирования) он по-разному вставляет AH-заголовок в IP-пакет. В транспортном режиме AH-заголовок располагается после заголовка протокола IP и перед заголовками протоколов верхнего уровня (Обычно, TCP или UDP). В режиме туннелирования весь исходный IP-пакет обрамляется сначала заголовком AH, затем заголовком IP-протокола. Такой заголовок называется внешним, а заголовок исходного IP-пакета- внутренним. После этого передающий IPsec-модуль должен сгенерировать последовательный номер и записать его в поле Sequence Number . При установлении SA последовательный номер устанавливается в 0, и перед отправкой каждого IPsec-пакета увеличивается на единицу. Кроме того, происходит проверка- не зациклился ли счетчик. Если он достиг своего максимального значения, то он снова устанавливается в 0. Если используется услуга по предотвращению повторной передачи, то при достижении счетчика своего максимального значения, передающий IPsec-модуль переустанавливает SA. Таким образом обеспечивается защита от повторной посылки пакета - приемный IPsec-модуль будет проверять поле Sequence Number , и игнорировать повторно приходящие пакеты. Далее происходит вычисление контрольной суммы ICV. Надо заметить, что здесь контрольная сумма вычисляется с применением секретного ключа, без которого злоумышленник сможет заново вычислить хэш, но не зная ключа, не сможет сформировать правильную контрольную сумму. Конкретные алгоритмы, использующиеся для вычисления ICV, можно узнать из RFC 4305 . В настоящее время могут применяться, например, алгоритмы HMAC-SHA1-96 или AES-XCBC-MAC-96. Протокол АН вычисляет контрольную сумму(ICV) по следующим полям IPsec-пакета:

    • поля IP-заголовка, которые не были подвержены изменениям в процессе транслирования, или определены как наиболее важные
    • АН-заголовок (Поля: "Next Header", "Payload Len, "Reserved", "SPI", "Sequence Number", "Integrity Check Value". Поле "Integrity Check Value" устанавливается в 0 при вычислении ICV
    • данные протокола верхнего уровня
    Если поле может изменяться в процессе транспортировки, то его значение устанавливается в 0 перед вычислением ICV. Исключения составляют поля, которые могут изменяться, но значение которых можно предугадать при приеме. При вычислении ICV они не заполняются нулями. Примером изменяемого поля может служить поле контрольной суммы, примером изменяемого, но предопределенного может являться IP-адрес получателя. Более подробное описание того, какие поля как учитываются при вычислении ICV, можно найти в стандарте RFC 2402 .

    Обработка входных IP-пакетов

    После получения пакета, содержащего сообщение АН-протокола, приемный IPsec-модуль ищет соответствующее защищенное виртуальное соединение(SA) SADB (Security Associations Database), используя IP-адрес получателя, протокол безопасности (АН) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищенное виртуальное соединение(SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, т.е. на необходимость проверки поля Sequence Number . Если услуга используется, то поле проверяется. Для этого используется метод скользящего окна. Приемный IPsec-модуль формирует окно с шириной W. Левый край окна соответствует минимальному последовательному номеру(Sequence Number ) N правильно принятого пакета. Пакет с полем Sequence Number , в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем приемный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле "Integrity Check Value". Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным и принимается для дальнейшей IP-обработки. Если проверка дала отрицательный результат, то приемный пакет уничтожается.

    Encapsulating Security Payload format
    Offsets Octet 16 0 1 2 3
    Octet 16 Bit 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    0 0 Security Parameters Index (SPI)
    4 32 Sequence Number
    8 64 Payload data
    Padding (0-255 octets)
    Pad Length Next Header
    Integrity Check Value (ICV)
    Security Parameters Index (32 bits) Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности(АН-протокол), однозначно определяет защищенное виртуальное соединение(SA) для данного пакета. Диапазон значений SPI 1...255 зарезервирован IANA для последующего использования. Sequence Number (32 bits) Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может и отказаться от услуги по защите от повторной передачи пакетов, оно всегда присутствует в AH-заголовке. Отправитель(передающий IPsec-модуль) должен всегда использовать это поле, но получатель может и не нуждаться в его обработке. Payload data (variable) Это поле содержит данные в соответствии с полем "Next Header". Это поле является обязательным и состоит из целого числа байтов. Если алгоритм, который используется для шифрования этого поля, требует данных для синхронизации криптопроцессов (например, вектор инициализации - "Initialization Vector"), то это поле может содержать эти данные в явном виде. Padding (0-255 octets) Дополнение. Необходимо, например, для алгоритмов, которые требуют, чтобы открытый текст был кратен некоторому числу байтов), например, размеру блока для блочного шифра. Pad Length (8 bits) Размер дополнения(в байтах). Next Header (8 bits) Это поле определяет тип данных, содержащихся в поле "Payload data". Integrity Check Value Контрольная сумма. Должна быть кратна 8-байтам для IPv6, и 4-байтам для IPv4.

    Обработка выходных IPsec-пакетов

    Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает ESP-обработку, то он начинает обработку. В зависимости от режима(транспортный или режим туннелирования) исходный IP-пакет обрабатывается по-разному. В транспортном режиме передающий IPsec-модуль осуществляет процедуру обрамления(инкапсуляции) протокола верхнего уровня(например, TCP или UDP), используя для этого ESP-заголовок и ESP-концевик, не затрагивая при этом заголовок исходного IP-пакета. В режиме туннелирования IP-пакет обрамляется ESP-заголовком и ESP-концевиком, после чего обрамляется внешним IP-заголовком. Далее производится шифрование- в транспортном режиме шифруется только сообщение протокола выше лежащего уровня (т.е. все, что находилось после IP-заголовка в исходном пакете), в режиме туннелирования- весь исходный IP-пакет. Передающий IPsec-модуль из записи о SA определяет алгоритм шифрования и секретный ключ. Стандарты IPsec разрешают использование алгоритмов шифрования triple-DES, AES и Blowfish. Так как размер открытого текста должен быть кратен определенному числу байт, например, размеру блока для блочных алгоритмов, перед шифрованием производится еще и необходимое дополнение шифруемого сообщения. Защифрованное сообщение помещается в поле Payload Data . В поле Pad Length помещается длина дополнения. Затем, как и в AH, вычисляется Sequence Number . После чего считается контрольная сумма(ICV). Контрольная сумма, в отличие от протокола AH, где при ее вычислении учитываются также и некоторые поля IP-заголовка, в ESP вычисляется только по полям ESP-пакета за вычетом поля ICV. Перед вычислением контрольной суммы оно заполняется нулями. Алгоритм вычисления ICV, как и в протоколе AH, передающий IPsec-модуль узнает из записи об SA, с которым связан обрабатываемый пакет.

    Обработка входных IPsec-пакетов

    После получения пакета, содержащего сообщение ESP-протокола, приемный IPsec-модуль ищет соответствующее защищенное виртуальное соединение(SA) в SADB (Security Associations Database), используя IP-адрес получателя, протокол безопасности (ESP) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищенное виртуальное соединение(SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, т.е. на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. Для этого, так же как и в AH, используется метод скользящего окна. Приемный IPsec-модуль формирует окно с шириной W. Левый край окна соответствует минимальному последовательному номеру(Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем, если используется услуга аутентификации, приемный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле "Integrity Check Value". Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным. Если проверка дала отрицательный результат, то приемный пакет уничтожается. Далее производится расшифрование пакета. Приемный IPsec-модуль узнает из записи об SA, какой алгоритм шифрования используется и секретный ключ. Надо заметить, что проверка контрольной суммы и процедура расшифрования могут проводиться не только последовательно, но и параллельно. В последнем случае процедура проверки контрольной суммы должна закончиться раньше процедуры расшифрования, и если проверка ICV провалилась, процедура расшифрования также должна прекратиться. Это позволяет быстрее выявлять испорченные пакеты, что, в свою очередь, повышает уровень защиты от атак типа "отказ в обслуживании"(DOS-атаки). Далее расшифрованное сообщение в соответствии с полем Next Header передается для дальнейшей обработки.

    Использование

    Протокол IPsec используется, в основном, для организации VPN-туннелей . В этом случае протоколы ESP и AH работают в режиме туннелирования. Кроме того, настраивая политики безопасности определенным образом, протокол можно использовать для создания межсетевого экрана. Смысл межсетевого экрана заключается в том, что он контролирует и фильтрует проходящие через него пакеты в соответствии с заданными правилами. Устанавливается набор правил, и экран просматривает все проходящие через него пакеты. Если передаваемые пакеты попадают под действие этих правил, межсетевой экран обрабатывает их соответствующим образом. Например, он может отклонять определенные пакеты, тем самым прекращая небезопасные соединения. Настроив политику безопасности соответствующим образом, можно, например, запретить интернет-трафик. Для этого достаточно запретить отсылку пакетов, в которые вкладываются сообщения протоколов HTTP и HTTPS . IPsec можно применять и для защиты серверов - для этого отбрасываются все пакеты, кроме пакетов, необходимых для корректного выполнения функций сервера. Например, для Web-сервера можно блокировать весь трафик, за исключением соединений через 80-й порт протокола TCP, или через порт TCP 443 в случаях, когда применяется HTTPS .

    См. также

    Ссылки

    • Описание конфигурирования IPSec (cisco.com) (англ.)

    IPsec представляет из себя не один протокол, а систему протоколов предназначенную для защиты данных на сетевом уровне IP-сетей. В данной статье будет описан теория применения IPsec для создания VPN туннеля.

    Введение

    VPN основанный на технологии IPsec можно разделить на две части:

    • Протокол Internet Key Exchange (IKE)
    • Протоколы IPsec (AH/ESP/both)

    Первая часть (IKE) является фазой согласования, во время которой две VPN-точки выбирают какие методы будут использоваться для защиты IP трафика посылаемого между ними. Помимо этого IKE также используется для управления соединениями, для этого вводится понятие Security Associations (SA) для каждого соединения. SA направлены только в одну сторону, поэтому типичное IPsec соединение использует два SA.

    Вторая часть – это те IP данные, которые необходимо зашифровать и аутентифицировать перед передачей методами, согласованными в первой части (IKE). Существуют разные протоколы IPsec, которые могут быть использованы: AH, ESP или оба.

    Последовательность установления VPN через IPsec можно кратко описать как:

    • IKE согласовывает защиту уровня IKE
    • IKE согласовывает защиту уровня IPsec
    • защищаемые данные передаются через VPN IPsec

    IKE, Internet Key Exchange

    Для шифрования и аутентификации данных требуется выбрать способ шифрования/аутентификации (алгоритм) и ключи используемые в них. Задача Internet Key Exchange protocol, IKE, в этом случае сводится к распространению данных “ключей сессии” и согласованию алгоритмов, которыми будут защищаться данные между VPN-точками.

    Основные задачи IKE:

    • Аутентификация VPN-точек друг друга
    • Организация новых IPsec соединений (через создание SA пар)
    • Управление текущими соединениями

    IKE ведет учет соединений путем назначения каждому из них некого Security Associations, SA. SA описывает параметры конкретного соединения, включая IPsec протокол (AH/ESP или оба), ключи сессии, используемые для шифрования/дешифрования и/или аутентификации данных. SA является однонаправленной, поэтому используется несколько SA на одно соединение. В большинстве случаев, когда используется только ESP или AH, создаются только две SA для каждого из подключений, одна для входящего трафика, а вторая для исходящего. Когда ESP и AH используются вместе, SA требуется четыре.

    Процесс согласования IKE проходит через несколько этапов (фаз). Данные фазы включают:

    1. IKE первой фазы (IKE Phase-1):
      — Согласовывается защита самого IKE (ISAKMP tunnel)
    2. IKE второй фазы (IKE Phase-2):
      — Согласовывается защита IPsec
      — Получение данных из первой фазы для формирования ключей сессии

    Соединения IKE и IPsec ограничены по продолжительности (в секундах) и по кол-ву переданных данных (в килобайтах). Это сделано для повышения защищенности.
    Продолжительность IPsec подключения, как правило, короче IKE. Поэтому, когда заканчивается срок IPsec соединения, новое IPsec соединение пересоздается через вторую фазу согласования. Первая фаза согласования используется только при пересоздании IKE подключения.

    Для согласования IKE вводится понятие IKE предложение (IKE Proposal) – это предложение того, как защитить данные. VPN-точка инициализирующая IPsec подключение отправляет список (предложение) в котором указаны разные методы защиты подключения.
    Переговоры могут вестись как об установлении нового IPsec соединения, так и об установлении нового IKE соединения. В случае IPsec защищаемыми данными является тот трафик, что отправлен чрез VPN-туннель, а в случае IKE защищаемые данные – данные самих согласований IKE.
    VPN-точка получившая список (предложение), выбирает из него наиболее подходящее и указывает его в ответе. Если ни одно из предложений не может быть выбрано, VPN шлюз отвечает отказом.
    Предложение содержит всю необходимую информацию для выбора алгоритма шифрования и аутентификации и пр.

    IKE первой фазы – согласование защиты IKE (ISAKMP Tunnel)
    На первой фазе согласования VPN-точки аутентифицируют друг друга на основе общего ключа (Pre-Shared Key). Для аутентификации используются хэш алгоритм: MD5, SHA-1, SHA-2.
    Однако перед тем как аутентифицировать друг друга, чтобы не передавать информацию открытым текстом, VPN-точки выполняют обмен списками предложений (Proposals), описанный ранее. Только после того как устраивающее обеих VPN-точек предложение выбрано, происходит аутентификация VPN-точка друг друга.
    Аутентификацию можно осуществлять разными способами: через общие ключи (Pre-Shared Keys), сертификаты или . Общие ключи являются наиболее распространенным способом аутентификации.
    Согласование IKE первой фазы может происходить в одном из двух режимов: main (основной) и aggressive (агресивный). Основной режим более длительный, но зато и более защищенный. В его процесее происходит обмен шестью сообщениями. Агресивный режим происходит быстрее, ограничиваясь тремя сообщениями.
    Основная работа первой фазы IKE лежит в обмене ключами Диффи-Хеллмана. Он основан на шифровании с открытым ключем, каждая из сторон шифрует аутентификационный параметр (Pre-Shared Key) открытым ключем соседа, который получив данное сообщение расшифровывает его своим закрытым ключем. Другой способо аутентификации сторон друг друга — использование сертификатов.

    IKE второй фазы – согласование защиты IPsec
    Во второй фазе осуществляется выбор способа защиты IPsec подключения.
    Для работы второй фазы используется материал (keying material) извлеченный из обмена ключами Диффи-Хеллмана (Diffie-Hellman key exchange), произошедшего на первой фазе. На основе этого материала создаются ключи сессии (session keys), использующиеся для защиты данных в VPN-туннеле.

    Если используется механизм Perfect Forwarding Secrecy (PFS) , то для каждого согласования второй фазы будет использоваться новый обмен ключами Диффи-Хеллмана. Несколько снижая скорость работы, данная процедура гарантирует, что ключи сессии не зависимы друг от друга, что повышает защиту, поскольку даже если произойдет компромат одного из ключей, он не сможет быть использован для подбора остальных.

    Режим работы второй фазы согласования IKE только один, он называется quick mode — быстрый режим. В процессе согласования второй фазы происходит обмен тремя сообщениями.

    По окончании второй фазы, устанавливается VPN-подключение.

    Параметры IKE.
    Во время установления соединения используются несколько параметров, без согласования которых невозможно установить VPN-подключение.

    • Идентификация конечных узлов
      Каким образом узлы аутентифицируют друг друга. Наиболее часто используется общий ключ. Аутентификация основанная на общем ключе использует алгоритм Диффи-Хеллмана.
    • Локальная и удаленная сеть/хост
      Определяет трафик, который будет пускаться через VPN-туннель.
    • Режим туннеля или транспорта.
      IPsec может работать в двух режимах: туннельном и транспортном. Выбор режима зависит от защищаемых объектов.
      Туннельный режим применяется для защиты между удаленными объектами, т.е. IP-пакет полностью инкапсулируется в новый и для наблюдателя со стороны будет видно только соединение между двумя VPN-точками. Реальные IP-адреса источника и получателя будут видны только после декапсуляции пакета при приеме его на VPN-точке получения. Таким образом туннельный режим чаще всего используется для VPN-подключений.
      Транспортный режим защищает данные IP-пакета (TCP, UDP и протоколы верхних уровней), а сам заголовок оригинального IP-пакета будет сохранен. Таким образом для наблюдателя будет виден оригинальный источник и назначение, но не передаваемые данные. Данный режим наиболее часто используется при защите соединение в локальной сети между хостами.
    • Удаленный шлюз
      VPN-точка получатель защищенного соединения, которая будет расшифровывать/аутентифицировать данные с другой стороны и отправлять их к окончательному месту назначения.
    • Режим работы IKE
      IKE согласование может работать в двух режимах: основной и агрессивном .
      Разница между ними заключается в том, что в агрессивном режиме используется меньшее кол-во пакетом, что позволяет достичь более быстрого установления соединения. С другой стороны агрессивный режим не передает некоторые параметры согласования, такие как Диффи-Хеллман группы и PFS, что требует предварительной идентичной настройки их на точках участницах подключения.
    • IPsec протоколы
      Существует два протокола IPsec: Authentication Header (AH) и Encapsulating Security Payload (ESP), которые выполняют функции шифрования и аутентификации.
      ESP позволяет шифровать, аутентифицировать по отдельности или одновременно.
      AH позволяет только аутентифицировать. Разница с ESP аутентификацией в том, что AH аутентифицирует также и внешний IP заголовок, позволяя подтвердить, что пакет прибыл действительно от источника указанного в нем.
    • IKE шифрование
      Указывает используемый алгоритм шифрования IKE и его ключи. Поддерживаются разные симметричные алгоритмы шифрования, например: DES, 3DES, AES.
    • IKE аутентификация
      Алгоритм аутентификации используемый в IKE согласовании. Могут быть: SHA, MD5.
    • IKE Диффи-Хеллмана (DH) группы
      Используемая DF группа для обмена ключами в IKE. Чем больше группа тем больше размер ключей обмена.
    • Продолжительность жизни IKE подключения
      Указывается как по времени (секундах), так и по размеру переданных данных (килобайтах). Как только один из счетчиков достигнет порогового значения запускается новая первая фаза. Если с момента создания IKE соединения не было передано никаких данных, никаких новых подключений не будет создано до тех пор, пока одна из сторон не захочет создать VPN соединение.
    • PFS
      При отключенном PFS материал для создания ключей будет извлечен в первой фазе согласования IKE в момент обмена ключей. Во второй фазе согласования IKE ключи сессии будут созданы основываясь на полученном материале. При включенном PFS при создании новых ключей сессии материал для них будет использоваться каждый раз новый. Таким образом при компромате ключа, на основе него не возможно создать новые ключи.
      PFS может быть использован в двух режимах: первый PFS на ключах (PFS on keys), будет запускать новый обмен ключами в первой фазе IKE каждый раз, когда запускается согласование
      второй фазы. Второй режим PFS на идентификаторах (PFS on identities), будет удалять SA первой фазы каждый раз, после прохождения согласования второй фазы, гарантируя тем самым, что ни одно согласование второй фазы не будет зашифровано идентичным предыдущему ключом.
    • IPsec DH группы
      Данные DF группы аналогичны использующимся в IKE, только используются для PFS.
    • IPsec шифрование
      Алгоритм использующийся для шифрования данных. Используется в случае использования ESP в режиме шифрования. Пример алгоритмов: DES, 3DES, AES.
    • IPsec аутентификация
      Алгоритм используемый для аутентификации передаваемых данных. Используется в случае AH или ESP в режиме аутентификации. Пример алгоритмов: SHA, MD5.
    • Время жизни IPsec
      Время жизни VPN соединения указывается как по времени (секундах) так и по размеру переданных данных (килобайты). Счетчик первым достигнувший лимита запустит пересоздание ключей сессии. Если с момента создания IKE соединения не было передано никаких данных, никаких новых подключений не будет создано до тех пор, пока одна из сторон не захочет создать VPN соединение.

    Методы аутентификации IKE

    • Ручной режим
      Самый простой из методов, при котором IKE не используется, а ключи аутентификации и шифрования, а также некоторые другие параметры задаются в ручную на обоих точках VPN подключения.
    • Через общие ключи (Pre-Shared Keys, PSK)
      Заранее введенный общий ключ на обоих точках VPN соединения. Отличие от предыдущего метода в том, что используется IKE, что позволяет аутентифицировать конечные точки и использовать меняющиеся ключи сессии, вместо фиксированных ключей шифрования.
    • Сертификаты
      Каждая точка VPN использует: свой приватный ключ, свой открытый ключ, свой сертификат включающий свой открытый ключ и подписанный доверенным центром сертификации. В отличие от предыдущего метода позволяет избежать ввода одного общего ключа на всех точках VPN соединения, заменяя его личными сертификатами, подписанными доверенным центром.

    Протоколы IPsec

    IPsec протоколы используются для защиты передаваемых данных. Выбор протокола и его ключей происходит при согласовании IKE.

    AH (Authentication Header)

    AH предоставляет возможно аутентифицировать передаваемые данные. Для этого используется криптографическая хэш-функция по отношению к данным содержащимся в IP-пакете. Вывод данной функции (хэш) передается вместе с пакетом и позволяет удаленной VPN точке подтвердить целостность оригинального IP-пакета, подтверждая, что он не был изменен по пути. Помимо данных IP-пакета, AH также аутентифицирует часть его заголовка.

    В режиме транспорта, AH встраивает свой заголовок после оригинального IP пакета.
    В режиме туннеля AH встраивает свой заголовок после внешнего (нового) IP-заголовка и перед внутренним (оригинальным) IP заголовком.

    ESP (Encapsulating Security Payload)

    ESP протокол используется для шифрования, для аутентификации или и того, и другого по отношению к IP пакету.

    В режиме транспорта ESP протокол вставляет свой заголовок после оригинально IP заголовка.
    В режиме туннеля ESP заголовок находится после внешнего (нового) IP заголовка и перед внутренним (оригинальным).

    Два основных различия между ESP и AH:

    • ESP помимо аутентификации предоставляет еще возможность шифрования (AH этого не предоставляет)
    • ESP в режиме туннеля аутентифицирует только оригинальный IP заголовок (AH аутентифицирует также внешний).

    Работа за NAT (NAT Traversal)
    Для поддержки работы за NAT была реализована отдельная спецификация. Если VPN-точка поддерживает данную спецификацию, IPsec поддерживает работу за NAT, однако существуют определённые требования.
    Поддержка NAT состоит из двух частей:

    • На уровне IKE конечные устройства обмениваются друг с другом информацией о поддержке, NAT Traversal и версией поддерживаемой спецификации
    • На уровне ESP сформированный пакет инкапсулируется в UDP.

    NAT Traversal используется только в том случае, если обе точки поддерживают его.
    Определение NAT : обе VPN-точки посылают хеши своих IP адресов вместе с UDP портом источника IKE согласования. Данная информация используется получателем, для того чтобы определить был ли изменен IP адрес и/или порт источника. Если данные параметры не были изменены, то трафик не проходит через NAT и механизм NAT Traversal не нужен. Если адрес или порт были изменены, значит между устройствами находится NAT.

    Как только конечные точки определят, что необходим NAT Traversal, согласование IKE перемещаются с порта UDP 500 на порт 4500. Делается это потому, что некоторые устройства некорректно обрабатывают IKE сессию на 500 порту при использовании NAT.
    Другая проблема возникает из-за того, что ESP протокол – протокол транспортного уровня и располагается непосредственно поверх IP. Из-за этого к нему не применимы понятия TCP/UDP порта, что делает невозможным подключение через NAT более одного клиента к одному шлюзу. Для решения данной проблемы ESP запаковывается в UDP дейтаграмму и посылается на порт 4500, тот же самый, который использует IKE при включенном NAT Traversal.
    NAT Traversal встроен в работу протоколов, его поддерживающих и работает без предварительной настройки.

    Рассмотрим архитектуру семейства протоколов IPSec. Цель данного семейства протоколов состоит в том, чтобы обеспечить различные сервисы безопасности на уровне IP для протоколов IPv4 и IPv6. Рассмотрим серви-сы безопасности, предоставляемые протоколами IPSec, и использование этих протоколов в сетях ТСР/ IP .

    Когда данные сервисы корректно установлены, они не мешают работе пользователей, хостов и других компонентов интернета, которые не применяют данные сервисы безопасности для защиты своего трафика. Эти сервисы являются алгоритмонезависимыми. Это означает возможность добавления новых криптографических алгоритмов без изменения самих протоколов. Например, различные группы пользователей могут использовать различные наборы алгоритмов.

    Определен стандартный набор алгоритмов по умолчанию для обеспечения интероперабильности во всем интернете. Использование этих алгоритмов совместно с защитой трафика, предоставляемой IPSec, и протоколами управления ключа позволит разработчика систем и приложений обеспечить высокую степень криптографической безопасности.

    IPSec может быть реализован как в ОС, так и в маршрутизаторе или межсетевом экране.

    IPSec обеспечивает конфиденциальность , целостность данных , управление доступом и аутентификацию источника данных для IP -дейтаграмм. Эти сервисы предоставляются с помощью поддержки состояния между источником и получателем IP -дейтаграмм. Данное состояние определяет конкретные сервисы обеспечения безопасности на уровне дейтаграммы, используемые криптографические алгоритмы для предоставляемых сервисов и ключи для этих алгоритмов.

    Перечислим основные задачи протоколов IPSec:

    1. Обеспечение криптографической защиты на уровне IP для протоколов IPv4 и IPv6, а именно обеспечение конфиденци-альности и целостности данных и целостности некоторой по-следовательности дейтаграмм.
    2. Обеспечение прозрачности для IP-трафика, для которого не требуется использование протоколов IPSec.
    3. Обеспечение расширяемости, т.е. возможности добавлять но-вые наборы алгоритмов без изменения самого протокола.

    IPSec предназначен для безопасного взаимодействия с использованием криптографии для протоколов IPv4 и IPv6. Сервисы безопасности включают управление доступом , целостность и конфиденциальность данных и защиту от replay-атак, которая обеспечивается гарантированием целостности некоторой последовательности дейтаграмм. Эти сервисы предоставляются на уровне IP , обеспечивая защиту для IP -протокола и протоколов более высокого уровня.

    IPSec поддерживает две формы целостности: целостность данных и целостность определенной последовательности дейтаграмм. Целостность данных обнаруживает модификацию конкретной IP -дейтаграммы, безотносительно последовательности дейтаграмм в потоке трафика. Целостность последовательности дейтаграмм является анти-reply сервисом, с помощью которого определяется получение дубликатов IP -дейтаграмм. Это отлича-ется от обеспечения целостности соединения, для которого существуют более строгие требования к целостности трафика, а именно, возможность определения потерянных или переупорядоченных сообщений.

    Рассмотрим выполнение протоколов IPSec, основные компоненты системы и их взаимодействие для обеспечения сервисов безопасности.

    IPSec выполняется на хосте ( Host – H) или шлюзе безопасности ( Security Gateway – SG), обеспечивая защиту IP -трафика. Термин " шлюз безопасности" используется для обозначения маршрутизатора, который реализует IPsec-протоколы.

    Защита основана на требованиях, определенных в базе данных политики безопасности ( Security Policy Database - SPD ), устанавливаемой и поддерживаемой администратором. В общем случае пакеты обрабатываются одним из трех способов, основанных на информации IP -заголовка и транспортного уровня в соответствии с записями в SPD . Каждый пакет либо отбрасывается, либо пропускается без обработки, либо обрабатывается в соответствии с записью SPD для данного пакета.

    Возможные способы реализации IPSec

    Существует несколько способов реализации IPSec на хосте или совместно с маршрутизатором или межсетевым экраном (для создания шлюза безопасности).

    1. нтеграция IPSec в конкретную реализацию протокола IP. Это требует доступа к исходному коду IP и делается как на хостах, так и на шлюзах безопасности.
    2. "Bump-in-the-stack" (BITS) реализации, когда IPSec реализован "внизу" существующей реализации стека IP-протоколов, встраивая свою реализацию между стандартной реализацией IP-протоколов и локальными сетевыми драйверами. Доступа к исходному коду стека IP в данном случае не требуется. Данный подход обычно реализуется на хостах, когда IPSec реализован в виде подключаемой библиотеки.
    3. Использование внешнего криптопроцессора. Обычно это называется "Bump-in-the-wire" (BITW) реализацией. Такие реализации могут использоваться как на хостах, так и на шлюзах. Обычно BITW-устройства являются IP-адресуемыми.

    Протоколы защиты трафика и понятие безопасной ассоциации

    Предоставляемые IPSec сервисы по защите трафика реализуются с помощью двух протоколов обеспечения безопасного трафика: Authentication Header ( AH ) и Encapsulating Security Payload ( ESP ).

    Для защиты трафика в IPSec определены следующие протоколы:

    1. Протокол Encapsulating Security Payload (ESP) обеспечивает конфиденциальность и целостность протоколов, расположенных выше в стеке протоколов и дополнительно может обеспечиваться анти-replay сервис, т.е. целостность некоторой последовательности дейтаграмм.
    2. Протокол Authentication Header (AH) обеспечивает целостность протоколов, расположенных выше в стеке протоколов и целостность отдельных полей IP-заголовка, которые не изменяются при пересылке от отправителя к получателю, дополнительно может обеспечиваться анти-replay сервис, т.е. целостность некоторой последовательности дейтаграмм. В IPSec v2 реализация данного протокола не является обязательной.
    3. Параметры этих протоколов определяются в протоколе распределения ключей Internet Key Exchange (IKE).

    С трафиком, безопасность которого обеспечивается IPSec, связано понятие безопасной ассоциации ( Security Association – SA ). SA содержит всю информацию, необходимую для выполнения различных сетевых сервисов безопасности.

    SA представляет собой симплексное (однонаправленное) логическое соединение , создаваемое между двумя конечными точками, для обеспечения безопасности которых используется один из протоколов IPSec. ESP и АН передают трафик по SA . Весь трафик, передаваемый по SA , обрабатывается в соответствии с политикой безопасности, заданной на концах соединения.

    Опишем различные аспекты управления SA , определим возможные способы управления политикой безопасности, способы обработки трафика и управления SA .

    SA определяет параметры сервисов безопасности, которые применяются к трафику. В обычном случае при двунаправленном соединении между двумя хостами или между двумя шлюзами безопасности требуется две SA (по одной на каждое направление).

    Будем рассматривать SA только для одноадресных соединений.

    Определены два режима SA : режим транспорта и режим туннелирования. Транспортный режим используется для создания VPN между двумя хостами. В IPv4 заголовок протокола безопасности транспортного режима появляется сразу после IP -заголовка. В протоколе ESP транспортный ре-жим SA обеспечивает сервисы безопасности только для протоколов более высокого уровня, но не для IP -заголовка. В случае АН защита распространяется также и на отдельные части IP -заголовка.

    Другим режимом SA является режим туннелирования. Если одним из концов соединения является шлюз безопасности, то по стандартам IPSec SA обязательно должна выполняться в туннельном режиме, но многие производители допускают в этом случае как туннельный, так и транспортный режимы. Заметим, что когда трафик предназначен для шлюза безопасности, например, в случае ping- или SNMP-команд, шлюз безопасности рассматривается как хост , и как правило используется транспортный режим . Два хоста могут при необходимости устанавливать туннельный режим .

    В туннельном режиме добавляется внешний IP -заголовок, адресами в котором являются шлюзы безопасности. Внутренний IP -заголовок указывает на конечные хосты. Заголовок протокола безопасности расположен после внешнего IP -заголовка и перед внутренним IP -заголовком. Если АН используется в туннельном режиме, части внешнего IP -заголовка являются защищенными, как и весь туннелируемый IP -пакет, т.е. все внутренние заголовки защищены, как и все протоколы более высокого уровня. Если применяется ESP , защита обеспечивается только для туннелируемого пакета, а не для внешнего заголовка.

    Кратко подытожим:

    1. Хост может поддерживать оба режима, как транспортный, так и туннельный.
    2. Шлюз безопасности как правило использует только туннель-ный режим. Если он поддерживает транспортный режим, то этот режим как правило используется только тогда, когда без-опасный шлюз является получателем трафика, например, для управления сетью.

    Набор реализуемых

    сеть , безопасного туннеля ( рис. 5.9), по которому передаются конфиденциальные или чувствительные к несанкционированному изменению данные. Подобный туннель создается с использованием криптографических методов защиты информации.

    Протокол работает на сетевом уровне модели OSI и, соответственно, он "прозрачен" для приложений. Иными словами, на работу приложений (таких как web- сервер , браузер , СУБД и т.д.) не влияет, используется ли защита передаваемых данных с помощью IPSec или нет.

    Операционные системы семейства Windows 2000 и выше имеют встроенную поддержку протокола IPSec. С точки зрения многоуровневой модели защиты, этот протокол является средством защиты уровня сети.


    Рис. 5.9.

    Архитектура IPSec является открытой, что, в частности, позволяет использовать для защиты передаваемых данных новые криптографические алгоритмы и протоколы, например соответствующие национальным стандартам. Для этого необходимо, чтобы взаимодействующие стороны поддерживали эти алгоритмы, и они были бы стандартным образом зарегистрированы в описании параметров соединения.

    Процесс защищенной передачи данных регулируется правилами безопасности, принятыми в системе. Параметры создаваемого туннеля описывает информационная структура, называемая контекст защиты или ассоциация безопасности (от англ. Security Association , сокр. SA ). Как уже отмечалось выше, IPSec является набором протоколов, и состав SA может различаться, в зависимости от конкретного протокола. SA включает в себя:

    • IP-адрес получателя;
    • указание на протоколы безопасности, используемые при передаче данных;
    • ключи, необходимые для шифрования и формирования имитовставки (если это требуется);
    • указание на метод форматирования, определяющий, каким образом создаются заголовки;
    • индекс параметров защиты (от англ. Security Parameter Index, сокр. SPI ) - идентификатор, позволяющий найти нужный SA.

    Обычно, контекст защиты является однонаправленным, а для передачи данных по туннелю в обе стороны задействуются два SA . Каждый хост имеет свою базу SA , из которой выбирается нужный элемент либо на основании SPI , либо по IP -адресу получателя.

    Два протокола, входящие в состав IPSec это:

    1. протокол аутентифицирующего заголовка - AH (от англ. Authentication Header), обеспечивающий проверку целостности и аутентификацию передаваемых данных; последняя версия протокола описана в RFC 4302 (предыдущие - RFC 1826, 2402);
    2. протокол инкапсулирующей защиты данных - ESP (от англ. Encapsulating Security Payload ) - обеспечивает конфиденциальность и, дополнительно, может обеспечивать проверку целостности и аутентификацию, описан в RFC 4303 (предыдущие - RFC 1827, 2406).

    Оба эти протокола имеют два режима работы - транспортный и туннельный, последний определен в качестве основного. Туннельный режим используется, если хотя бы один из соединяющихся узлов является шлюзом безопасности. В этом случае создается новый IP -заголовок, а исходный IP -пакет полностью инкапсулируется в новый.

    Транспортный режим ориентирован на соединение хост - хост . При использовании ESP в транспортном режиме защищаются только данные IP -пакета, заголовок не затрагивается. При использовании AH защита распространяется на данные и часть полей заголовка. Более подробно режимы работы описаны ниже.

    Протокол AH

    В IP ver .4 аутентифицирующий заголовок располагается после IP-заголовка. Представим исходный IP-пакет как совокупность IP-заголовка, заголовка протокола следующего уровня (как правило, это TCP или UDP, на рис. 5.10 он обозначен как ULP - от англ. Upper-Level Protocol) и данных.


    Рис. 5.10.

    Рассмотрим формат заголовка ESP ( рис. 5.13). Он начинается с двух 32-разрядных значений - SPI и SN . Роль их такая же, как в протоколе AH - SPI идентифицирует SA, использующийся для создания данного туннеля; SN - позволяет защититься от повторов пакетов. SN и SPI не шифруются.

    Следующим идет поле, содержащее зашифрованные данные. После них - поле заполнителя, который нужен для того, чтобы выровнять длину шифруемых полей до значения кратного размеру блока алгоритма шифрования.


    Рис. 5.12.


    Рис. 5.13.

    После заполнителя идут поля, содержащие значение длины заполнителя и указание на протокол более высокого уровня. Четыре перечисленных поля (данные, заполнитель, длина, следующий протокол) защищаются шифрованием.

    Если ESP используется и для аутентификации данных, то завершает пакет поле переменной длины, содержащее ICV. В отличие от AH, в ESP при расчете значения имитовставки , поля IP-заголовка (нового - для туннельного режима, модифицированного старого - для транспортного) не учитываются.

    При совместном использовании протоколов AH и ESP , после IP заголовка идет AH, после него - ESP . В этом случае, ESP решает задачи обеспечения конфиденциальности, AH - обеспечения целостности и аутентификации источника соединения.

    Рассмотрим ряд дополнительных вопросов, связанных с использованием IPSec. Начнем с того, откуда берется информация о параметрах соединения - SA. Создание базы SA может производиться различными путями. В частности, она может создаваться администратором безопасности вручную, или формироваться с использованием специальных протоколов - SKIP , ISAKMP ( Internet Security Association and Key Management Protocol) и IKE (Internet Key Exchange).

    IPSec и NAT

    При подключении сетей организаций к Интернет, часто используется механизм трансляции сетевых адресов - NAT ( Network Address Translation ). Это позволяет уменьшить число зарегистрированных IP-адресов, используемых в данной сети. Внутри сети используются незарегистрированные адреса (как правило, из диапазонов, специально выделенных для этой цели, например, адреса вида 192.168.x.x для сетей класса C). Если пакет из такой сети передается в Интернет, то маршрутизатор, внешнему интерфейсу которого назначен по крайней мере один зарегистрированный ip-адрес, модифицирует ip-заголовки сетевых пакетов, подставляя вместо частных адресов зарегистрированный адрес. То, как производится подстановка, фиксируется в специальной таблице. При получении ответа, в соответствии с таблицей делается обратная замена и пакет переправляется во внутреннюю сеть.

    Рассмотрим пример использования NAT рис. 5.14 . В данном случае, во внутренней сети используются частные адреса 192.168.0.x. С компьютера, с адресом 192.168.0.2 обращаются во внешнюю сеть к компьютеру с адресом 195.242.2.2. Пусть это будет подключение к web-серверу (протокол HTTP, который использует TCP порт 80).

    При прохождении пакета через маршрутизатор, выполняющий трансляцию адресов, ip-адрес отправителя (192.168.0.2) будет заменен на адрес внешнего интерфейса маршрутизатора (195.201.82.146), а в таблицу трансляции адресов будет добавлена запись, аналогичная приведенной в

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама