THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Современный рынок информационных технологий предлагает широкий спектр универсальных и специализированных

CAD/CAM- и CAE-систем, позволяющих пользователям обеспечить сквозную цепочку автоматизированного проектирования и технологической подготовки производства новых изделий любой степени сложности. Высокий уровень развития этих программных средств в сочетании с их простотой и доступностью в процессе работы позволяет легко приобщиться к их использованию в повседневной производственной практике широкому кругу инженеров, не обладающих глубокими знаниями в области информационных технологий. В то же время даже самые «умные» на сегодняшний день компьютерные программы являются всего лишь инструментом в руках человека, а результат работы указанных систем существенно зависит от степени владения предметной областью специалиста, интеллектуальный труд которого и призваны автоматизировать эти программы. Это особенно актуально в отношении современных CAE-систем, где без глубинного понимания исследуемых процессов и овладения методами расчета, заложенным в программе, сегодня просто не обойтись.

Говоря об автоматизированном проектировании нового изделия, мы основную часть внимания уделяем вопросам создания CAD-моделей (графических моделей) отдельных деталей и сборок и разработке технологии изготовления деталей по построенным графическим моделям с привлечением CAM-систем. При этом за кадром остается важная часть процесса проектирования, связанная, в частности, с анализом работоспособности этого изделия, его способности воспринимать планируемые нагрузки и адекватно реагировать на окружающую среду. Прочностной и прочие виды анализа нового изделия, разумеется, требуются не во всех случаях, но и там, где это необходимо, они нередко игнорируются.

Современные программные средства в подавляющем большинстве случаев позволяют полностью или частично отказаться от натурного эксперимента, переведя все в область компьютерного моделирования с привлечением CAE-систем. Чем больше работ выполняется с применением CAD-систем и чем больше разрабатывается трехмерных графических моделей новых изделий, тем заманчивее представляется использование компьютерного анализа.

В то же время сближение CAD- и CAE-систем проходит крайне трудно. Настаивая на том, что графические и расчетные модели существенно различаются, разработчики последних зачастую настаивают на целесообразности разработки расчетных моделей с нуля, с использованием встроенных в CAE-программы редакторов.

Дыма без огня не бывает, и позиция разработчиков CAE-программ, безусловно, небеспочвенна. Попробуем на примере конечно-элементных программ разобраться в проблемах, возникающих на пути преобразования графических моделей в расчетные.

Пропасть между геометрической и расчетной моделями

Конечно-элементные программы решают задачи деформируемого твердого тела, теплофизики, гидрогазодинамики (в этом случае сам метод конечных элементов, возможно, не самый подходящий, однако часть задач гидрогазодинамики решается на его основе), позволяют анализировать электромагнитные поля, получать решения в области акустики.

Работа расчетчика в современной конечно-элементной программе начинается с постановки задачи и изучения особенностей чертежа или графической 3D-модели спроектированного изделия. При наличии графической модели логично использовать ее в CAE-программе для построения расчетной модели. Отличие расчетной модели от графической определяется в первую очередь наложением граничных условий в расчетной модели. К граничным условиям относятся действующие на изделие нагрузки, закон их изменения и условие закрепления. Кроме того, для выполнения расчета необходимо определить свойства материала изделия и условия окружающей среды, а также задать критерии жесткости (как правило, предел текучести) и прочности (зазоры - для прогноза возможного заклинивания). Таковы необходимые исходные данные, требующие корректного определения для успешного проведения расчетов.

По перемещениям и напряжениям, выдаваемым конечно-элементной программой в каждой точке изделия, производится оценка превышения допустимых пределов жесткости и прочности. Результатом оценки может стать конструктивное изменение, изменение условий нагружения, изменение свойств или использование другого материала. При этом конструктивные изменения выполняются вручную в исходной графической модели изделия.

Однако наложение граничных условий - это только часть преобразования графической модели в расчетную, к тому же, на мой взгляд, самая безобидная, поскольку не связана с изменением формы в исходной графической модели. Для того чтобы воспользоваться любым из существующих методов расчета в конечно-элементной программе, графическую модель следует разбить на некоторое число конечных элементов определенной формы.

Исходя из расчета конструкции на прочность, различают три типа расчетных моделей, которые могут одновременно применяться в одной расчетной модели:

  • модели из стержневых элементов;
  • модели из оболочечных элементов;
  • модели из сплошных объемных элементов (солидов).

К одномерным стержневым элементам относятся тела, один из размеров которых на порядок (то есть в 10 раз) превышает два других размера. Оболочка - это когда один из размеров тела на порядок меньше двух остальных размеров (крыша автомобиля, днище автомобиля, крыло самолета, обшивка самолета и т.п.). Все остальные тела, имеющие соизмеримые по трем направлениям размеры, рассматриваются как солиды (типичные представители этой группы деталей - блок цилиндров, шатун, коленчатый вал). Степень сложности расчета растет от моделей из стержневых элементов к моделям из солидов.

Этап приведения геометрической модели к расчетной является самым сложным и пока мало поддающимся автоматизации. Без квалифицированного специалиста, разбирающегося не только в методах расчета, но и в исследуемом процессе, на сегодняшний день обойтись невозможно.

Вот несколько примеров. Нужно ли обшивку самолета или корабля рассчитывать с использованием модели из сплошных объемных элементов? Наверное, нет, поскольку здесь скорее применимы оболочечные модели, имеющие существенно меньшую размерность в расчетах. Да и точность результата может оказаться в этом случае выше именно у оболочечных моделей в сравнении с трехмерными.

Другим примером может служить прочностной анализ обычной лестницы. Есть ли смысл разбивать трехмерную модель лестницы или пролета моста на солиды или проще представить их в виде стержневой модели, сведя задачу до расчета балок и рам, и таким образом намного эффективнее достичь конечного результата?

Довольно большое число реальных объектов идеально вписываются в оболочечные и стержневые модели. Однако не все так просто. Вот один из примеров расчетов, проводимых в ЦАГИ и связанных с анализом напряженно-деформированного состояния крюка планера, за который он цепляется веревкой к самолету для разгона и набора необходимой высоты. Казалось бы, расчетчики имеют дело с самым что ни на есть классическим примером плосконапряженного состояния детали, изготавливаемой, кстати, из обыкновенного листа, что и было учтено в расчетной модели. Первый же расчет выявил достаточно нагруженную зону, на которую прежде никогда не обращали внимание. Но как только расчетчики перешли к модели из солидов и посчитали деталь с учетом других особенностей, выяснилось, что критическая по нагружению зона «размазалась», напряжения перераспределились, а выявленная зона на самом деле не является критичной по напряжениям.

Это к вопросу о выборе расчетной модели. Мы живем в трехмерном пространстве и не всегда его следует упрощать. При приведении объекта к любой из существующих расчетных моделей важно давать себе полный отчет в том, что именно мы считаем. Любая из моделей в приведенных примерах построена на определенных гипотезах и допущениях, упрощающих представление анализируемого объекта. Игнорирование этого факта может привести к неверной интерпретации результатов анализа. Поэтому важно знать, до какого предела возможно упрощение расчетных моделей.

На сегодняшний день любой CAE-комплекс следует рассматривать лишь как инструмент, который может «зазвучать» только в руках мастера.

Расчет и анализ для всех

Несмотря на кажущуюся неразрешимость противоречий, возникающих на пути сближения CAD и CAE, логика прогресса неумолима. Шаг за шагом разработчики информационных технологий накапливают знания в области интеллектуализации компьютерных программ и неуклонно расширяют их функциональные возможности. Безусловно, человек-эксперт будет занимать главенствующую позицию всегда (по крайней мере, я на это надеюсь), но доступ к знаниям будут получать все большее число специалистов, не имеющих специальных познаний в смежных областях.

Что можно в работе конструктора автоматизировать уже сегодня? Если задача и сам расчет не очень сложны, а алгоритмы, заложенные в программе, уже десятилетиями апробированы и всесторонне изучены (так что сам факт возникновения ошибки маловероятен и пользователь не нуждается в глубоком и всестороннем анализе процесса - ему требуется только некоторый оценочный результат для принятия дальнейших шагов в разработке нового изделия), то возможно использование уже имеющихся для этих целей интегрированных с CAD приложений, специально разработанных для инженеров-конструкторов.

Примером таких приложений являются DesignSpace (ANSYS, Inc.) и Dynamic Designer (Mechanical Dynamics, Inc.), использующие графические модели, разработанные конструктором, как есть - без модификации формы изделия.

Dynamic Designer и DesignSpace выполнены в рамках общей концепции, предусматривающей обмен данными через CAD-систему. Данные, полученные в результате работы одного из приложений, сохраняются вместе с данными графической модели и доступны для работы в другом приложении. В рамках концепции могут быть задействованы такие CAD-системы среднего уровня, как Mechanical Desktop, Microstation Modeler, Solid Edge, SolidWorks. Системы Dynamic Designer и DesignSpace служат ярким примером переноса идеологии тяжелых САПР на уровень средних.

Прочностной анализ изделия в DesignSpace

Программа DesignSpace относится к классу систем среднего уровня. Кроме прочностных расчетов в DesignSpace могут решаться тепловые задачи, выполняться топологическая оптимизация формы изделия (предсказание оптимальной формы изделия под конкретные эксплуатационные условия) и анализироваться собственные частоты. В рамках DesignSpace полностью автоматизированы операции, выполняемые расчетчиками на профессиональных конечно-элементных пакетах, в том числе и построение конечно-элементной сетки. Сетки строятся из квадратичных параметрических тетраэдров с узлами при вершине и на серединах ребер, что позволяет достигать неплохих результатов.

Для прикидочной оценки работоспособности конструкции возможностей программы DesignSpace вполне достаточно. Программа без участия пользователя автоматически выполняет оптимизацию расчетных моделей. Апробированные многолетней практикой приемы позволяют достигать хороших результатов расчета. В частности, речь идет о разбиении на конечные элементы. Например, если внутри тела изделия встречается цилиндрическое отверстие, которое в плане может быть рассмотрено как окружность, то при построении сетки, в случае использования конечных элементов первого порядка, разбиение по дуге окружности должно идти через каждые 15°, а если используются элементы второго порядка, то не реже чем через 20-25°. В этом случае ошибка по напряжениям составит не более 5-10%. И если специалисты-прочнисты знают это, то инженер-конструктор может и не знать, поэтому вся работа по созданию конечно-элементной сетки в DesignSpace скрыта от его глаз. DesignSpace как бы ведет конструктора шаг за шагом по узкому коридору, выполняя за него требуемые операции и не позволяя ему ошибиться.

Разумеется, программа DesignSpace имеет свои пределы применимости - это большие перемещения и большие деформации, а также используется для решения сложных связанных задач. Для определения выхода за рамки ограничений по перемещениям и деформациям рекомендуется сделать поверочный расчет и убедиться, что полученные в результате деформации и напряжения не выходят за рамки, накладываемые упругими деформациями. В противном случае решение будет неверным.

Интересным представляется решение в программе задачи топологической оптимизации изделия. Идея заключается в том, что пользователь задает один или несколько расчетных случаев, в которых полностью определяет граничные условия и задает некоторый процент редукции веса (например, 25 или 30%), который планируют достичь в результате анализа. В рамках заданных допущений выполняется расчет, в процессе которого итерационно для каждого случая определяется и строится поле главных напряжений. По полученным полям выявляются наименее нагруженные участки. Далее программа, с учетом заданного процента редуцирования, исключает их из анализа, выполняет повторный расчет с построением поля главных напряжений. Таким образом, в результате нескольких итераций пользователь получает некоторую приближенную к равнопрочностной конструкцию, получаемую отсечением «лишних», не несущих для заданных нагрузок, участков материала. Визуализация решения возможна в виде цветовых заливок, подсказывающих конструктору, в каких местах изделие можно утончить и где убрать лишний материал.

В качестве алгоритма оптимизации веса детали взят один из двух доступных в системе ANSYS - как наиболее простой и основанный на так называемой псевдоплотности материала.

Другой интересной возможностью, о которой нельзя не сказать, является функция автоматической генерации отчетов о проведенном в заданный период времени анализе. Отчет формируется (правда, к сожалению, на английском языке) в формате HTML и включает в себя как все исходные данные по постановке задачи, так и самые подробные сведения о результатах расчета (напряжения, частоты, температуры и т.д.). В отчет также включаются и визуальные трехмерные изображения в формате JPG и VRML 2.0. Подобную функцию предполагается включить и в профессиональный CAE-пакет ANSYS.

Динамический и кинематический анализ в Dynamic Designer

Схожим, ориентированным на инженера-конструктора приложением, для двухмерного и трехмерного кинематического и динамического анализа является Dynamic Designer. Работая с ним, конструктор использует в качестве исходных данных CAD-модель сборки или отдельной детали, доступ к которой не требует выхода из графического пакета. Активизация приложения выполняется щелчком мыши на соответствующей пиктограмме, после чего пользователь расставляет необходимые связи, задает начальные и граничные условия, прикладывает внешние нагрузки, описывает заданные углы поворота и перемещения (а также силы, моменты, ускорения) и доводит тем самым графическую модель до расчетной, не меняя формы изделия. Характерными возможностями Dynamic Designer являются:

  • анализ 2D- и 3D-механизмов;
  • полная ассоциативность расчетных параметров с геометрией;
  • использование всех типов геометрии - проволочной, поверхностной, твердотельной;
  • интуитивно понятное, «ведущее» пользователя меню;
  • построение шарниров при помощи функции drag-and-drop в окне отображения состава модели;
  • прямое приложение предписанных перемещений и поворотов.

Кроме того, система оценивает работоспособность механизма, предсказывает вероятность заклинивания.

Пути сближения CAD и CAE

Один из путей сближения CAD- и CAE-систем мы уже фактически рассмотрели (когда берется «кусочек» профессиональной тяжелой CAE-системы и встраивается в CAD). Кстати, полученная в таком встроенном приложении расчетная модель может быть передана в профессиональную CAE-систему высокого уровня для дальнейшего более углубленного анализа и исследования.

Второй путь - это развитие и совершенствование средств создания расчетных моделей, ассоциативно связанных с геометрической моделью и переданных из CAD-систем.

Третий путь - использование универсальных сеточных генераторов. Сеточный генератор представляет собой компьютерную программу для создания дискретных моделей, так называемые сетки (плоские и пространственные), используемые в дальнейшем в любых расчетных программах, использующих принцип дискретизации пространства. Работа сеточных генераторов основана на принципе минимизации увязки ошибок. Он заключается в том, что строится первая сетка, выполняется расчет, проводится оценка разницы между работой упругих и внешних сил. Определяются такие места, где эта разница максимальна, и в них выполняется доразбивка конечного элемента. И так до тех пор, пока разность не достигнет заданного процента (чаще всего 5%).

В настоящее время сложно привести пример программы, в которой не требовалось бы участие квалифицированного расчетчика. По-прежнему главным остается понимание анализируемого процесса, владение спецификой предметной области и методиками расчета. В то же время сеточные генераторы год от года совершенствуются, становясь все менее притязательными к пользователю, в результате чего появляются все более совершенные сетки для расчетов.

Построение таких сеток по графической модели в значительной мере сопряжено с необходимостью учета дальнейшего ее использования. В зависимости от решаемой задачи на основе конечно-элементной сетки будет получено то или иное разбиение на конечные элементы. Другими словами, речь идет о развитии направления создания адаптивных сеток. Для быстрого получения наиболее точного решения очень важно оптимальное сгущение или разряжение сетки в критичных местах, соответствующее конкретной решаемой задаче. Например, если решается задача гидрогазодинамики, то очень важным становится качество сетки (или ее регулярности) в районе пограничного слоя. В связи с этим сеточные генераторы могут быть узкоспециализированными (направленными на решение определенных задач) или универсальными.

Между CAD-системой и сеточным генератором существует промежуточное звено, например уникальный в своем роде пакет CADfix , который занимается трансформацией геометрии с целью приведения ее к расчетной модели. Кроме того, программа является великолепным транслятором данных из одного формата в другой для различных CAD-систем. При работе с расчетными моделями в CADfix возможно удаление («сглаживание») различных несущественных для проводимого расчета геометрических тонкостей. В частности, могут быть удалены некоторые отверстия или фаски. А если есть некая сложная замкнутая область, она может быть разбита на более простые тела для гибкого оперирования с каждой из них.

Преобразованная в CADfix графическая модель может быть передана непосредственно в CAE-систему либо в сеточный генератор.

В приложениях, подобных CADfix, или в сеточных генераторах работа идет с графическими моделями из солидов. Это связано с тем, что стержневые или оболочечные расчетные модели, как правило, не нуждаются в очень сложных преобразованиях. Практически в каждой профессиональной CAE-системе есть собственный редактор, с помощью которого легко и просто формируются стержневые расчетные модели любой сложности.

«САПР и графика» 1"2001

Функции CAE -систем довольно разнообразны, так как связаны с проектными процедурами анализа, моделирования , оптимизации проектных решений. В состав машиностроительных CAE-систем прежде всего включают программы для выполнения следующих процедур:

    моделирование полей физических величин, в том числе анализ прочности, который чаще всего выполняется в соответствии с МКЭ ;

    расчет состояний моделируемых объектов и переходных процессов в них средствами макроуровня ;

    имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри .

Основными частями программ анализа с помощью МКЭ являются библиотеки конечных элементов, препроцессор, решатель и постпроцессор.

Библиотеки конечных элементов (КЭ) содержат модели КЭ - их матрицы жесткости . Очевидно, что модели КЭ будут различными для разных задач (анализ упругих или пластических деформаций, моделирование полей температур, электрических потенциалов и т.п.), разных форм КЭ (например, в двумерном случае - треугольные или четырехугольные элементы), разных наборов координатных функций .

Исходные данные для препроцессора - геометрическая модель объекта, чаще всего получаемая из подсистемы конструирования. Основная функция препроцессора - представление исследуемой среды (детали) в сеточном виде, т.е. в виде множества конечных элементов.

Решатель - программа, которая ассемблирует (собирает) модели отдельных КЭ в общую систему алгебраических уравнений и решает эту систему одним из методов разреженных матриц .

Постпроцессор служит для визуализации результатов решения в удобной для пользователя форме. В машиностроительных САПР это графическая форма. Пользователь может видеть исходную (до нагружения) и деформированную формы детали, поля напряжений, температур, потенциалов и т.п. в виде цветных изображений, в которых палитра цветов или интенсивность свечения характеризуют значения фазовой переменной .

Основные функции cad-систем

Функции CAD -систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относят черчение, оформление конструкторской документации; к функциям 3D - получение трехмерных геометрических моделей, метрические расчеты, реалистичную визуализацию, взаимное преобразование 2D и 3D моделей. Трехмерные модели представляют в виде описания поверхностей, ограничивающих деталь, или указанием элементов пространства, занимаемых телом детали. Модели поверхностей сложной формы получают с помощью разновидностей кинематического метода , к которым относят вытягивание заданного плоского контура по нормали к его плоскости, протягивание контура вдоль произвольной пространственной кривой, вращение контура вокруг заданной оси, натягивание поверхности между несколькими заданными сечениями. В случае построения скульптурных поверхностей , проходящих через заданные точки пространства, применяют модели в форме Безье , а при требованиях высокой гладкости поверхности - модели в форме B-сплайнов . Синтез моделей сборок выполняют применением операций позиционирования и теоретико-множественных операций пересечения, объединения, вычитания к библиотечным элементам и вновь созданным моделям комплектующих деталей. В ряде систем предусмотрено также выполнение операций компоновки и размещения оборудования, проведения соединительных трасс и т.п.

К важным характеристикам CAD-систем относятся параметризация и ассоциативность . Параметризация подразумевает использование геометрических моделей в параметрической форме, т.е. при представлении части или всех параметров объекта не константами, а переменными. Параметрическая модель , находящаяся в базе данных, легко адаптируется к разным конкретным реализациям и потому может использоваться во многих конкретных проектах. При этом появляется возможность включения параметрической модели детали в модель сборочного узла с автоматическим определением размеров детали, диктуемых пространственными ограничениями. Эти ограничения в виде математических зависимостей между частью параметров сборки отражают ассоциативность моделей.

Параметризация и ассоциативность играют важную роль при проектировании конструкций узлов и блоков, состоящих из большого числа деталей. Действительно, изменение размеров одних деталей оказывает влияние на размеры и расположение других. Благодаря параметризации и ассоциативности изменения, сделанные конструктором в одной части сборки, автоматически переносятся в другие части, вызывая изменения соответствующих геометрических параметров в этих частях.

Корректные синтез и редактирование 3D твердотельных моделей изделий возможны с помощью нескольких методов.

Наиболее очевидный метод - задание проектировщиком изделия ограничений и условий, накладываемых на параметры модели и отражающих требования непересечения тел, соосности отверстий, компланарности, перпендикулярности и т.п.

В большинстве современных MCAD используется метод, основанный на использовании дерева построения модели. Деревом построения называют историю моделирования сборки, другими словами, последовательность операций создания модели, упорядоченную по времени их совершения. Согласно этому методу внесение изменений в ту или иную часть модели подразумевает переход в ту вершину дерева, которая соответствует изменяемой части, и после внесения изменений повторное выполнение всех последующих операций синтеза.

Третий способ - синхронное моделирование , основанное на автоматическом определении, благодаря применению экспертных систем , тех ограничений, которые в первом методе задаются пользователем. В результате упрощается работа конструктора, не требуются затраты времени на перестроение дерева модели.

Функции CAD-систем в ма­шиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D - по­лучение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобра­зование 2D и 3D моделей.

Среди CAD-систем различают “легкие” и “тяжелые” системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычис­лительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универ­сальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей.

Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моде­лирование процессов обработки, в том числе построение траекторий относительного движения инст­румента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов обору­дования с ЧПУ (NC - Numerical Control), расчет норм времени обработки.

Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. “Тяже­лые” системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC - Parametric Technology Corp.), СЛТ1Л (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

“Легкие” системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и др. С ростом возможностей персональных ЭВМ грани между “тяжелыми” и “легкими” CAD/CAM-системами постепенно стираются.

Функции CAE-систем довольно разнообразны, так как связаны с проектными процедурами ана­лиза, моделирования, оптимизации проектных решений. В состав машиностроительных САЕ-систем прежде всего включают программы для следующих процедур:

Моделирование полей физических величин, в том числе анализ прочности, который чаще все­го выполняется в соответствии с МКЭ;

Расчет состояний и переходных процессов на макроуровне;

Имитационное моделирование сложных производственных систем на основе моделей массо­вого обслуживания и сетей Петри.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastran, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna - в механических сис­темах, Spice - в электронных схемах, ПА9 - для многоаспектного моделирования, т.е. для моделирования систем, прин­ципы действия которых основаны на взаимовлиянии физических процессов различной природы.

Для удобства адаптации САПР к нуждам конкретных приложений, для ее развития целесообраз­но иметь в составе САПР инструментальные средства адаптации и развития. Эти средства представ­лены той или иной CASE-тсхнологисй, включая языки расширения. В некоторых САПР применяют оригинальные инструментальные среды.

Примерами могут служить объектно-ориентированная интерактивная среда CAS.CADE в системе EUCLID, содер­жащая библиотеку компонентов, в САПР T-Flex CAD 3D предусмотрена разработка дополнений в средах Visual C++ и Visual Basic.

Важное значение для обеспечения открытости САПР, се интегрируемости с другими автомати­зированными системами (АС) имеют интерфейсы, представляемые реализованными в системе форма­тами межпрограммных обменов. Очевидно, что, в первую очередь, необходимо обеспечить связи между CAE, CAD и САМ-подсистемами.

В качестве языков - форматов межпрограммных обменов - используются IGES, DXF, Express (стандарт ISO 10303-11, входит в совокупность стандартов STEP), SAT (формат ядра AC1S) и др.

Наиболее перспективными считаются диалекты языка Express, что объясняется общим характе­ром стандартов STEP, их направленностью на различные приложения, а также на использование в со­временных распределенных проектных и производственных системах. Действительно, такие форма­ты, как IGES или DXF, описывают только геометрию объектов, в то время как в обменах между раз­личными САПР и их подсистемами фигурируют данные о различных свойствах и атрибутах изделий.

Язык Express используется во многих системах интерфейса между CAD/CAM-системами. В частности, в систему CAD ++ STEP включена среда SDA1 (Standard Data Access Interface), в которой возможно представление данных об объек­тах из разных систем CAD и приложений (но описанных по правилам языка Express). CAD++ STEP обеспечивает доступ к базам данных большинства известных САПР с представлением извлекаемых данных в виде STEP-файлов. Интерфейс программиста позволяет открывать и закрывать файлы проектов в базах данных, производить чтение и запись сущностей. В качестве объектов могут использоваться точки, кривые, поверхности, текст, примеры проектных решений, размеры, свя­зи, типовые изображения, комплексы данных и т.п.

Определение CAD, САМ и CAE

Согласно предыдущему разделу, автоматизированное проектирование (computer- aided design - CAD) представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, также как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических программ для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс-инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция GAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т, и,), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования. Вот почему эти системы обычно и считаются системами автоматизированного проектирования. Более того, геометрия, определенная в этих системах, может использоваться в качестве основы для дальнейших операций в системах САЕ и САМ. Это одно из наиболее значительных преимуществ CAD, позволяющее экономить время и сокращать количество ошибок, связанных с необходимостью определять геометрию конструкции с нуля каждый раз, когда она требуется в расчетах. Можно, следовательно, утверждать, что системы автоматизированной разработки рабочих чертежей и системы геометрического моделирования являются наиболее важными компонентами автоматизированного проектирования.

Автоматизированное производство (computer-aided manufacturing - САМ) - это технология, состоящая в использовании компьютерных систем для планирования, управления и контроля операций производства через прямой или косвенный интерфейс с производственными ресурсами предприятия. Одним из наиболее зрелых подходов к автоматизации производства является числовое программное управление (ЧПУ, numerical conovl - NC). ЧПУ заключается в использовании запрограммированных команд для управления станком, который может шлифовать, резать, фрезероваггь, штамповать, изгибать и иными способами превращать заготовки в готовые детали. В наше время компьютеры способны генерировать большие программы для станков с ЧПУ на основании геометрических параметров изделий из базы данных CAD и дополнительных сведений, предоставляемых оператором. Исследования в этой области концентрируются на сокращении необходимости вмешательства оператора.

Еще одна важная функция систем автоматизированного производства - программирование роботов, которые могут работать на гибких автоматизированных участках, выбирая и устанавливая инструменты и обрабатываемые детали на станках с ЧПУ Роботы могут также выполнять свои собственные задачи, например, заниматься сваркой, сборкой и переносом оборудования и деталей по цеху.

Планирование процессов также постепенно автоматизируется. План процессов может определять последовательность операций по изготовлению устройства от начала и до конца на всем необходимом оборудовании. Хотя полностью автоматизированное планирование процессов, как уже отмечалось, практически невозможно, план обработки конкретной детали вполне может бьггь сформирован автоматически, если уже имеются планы обработки аналогичных деталей. Для этого была разработана технология группировки, позволяющая объединять схожие детали о семейства. Детали считаются подобными, если опт имеют общие производственные особенности (гнезда, пазы, фаски, отверстия и т, д.). Для аЕггомалгического обнаружения схожести деталей необходимо, чтобы бала данных CAD содержала сведения о таких особенностях. Эта задача осуществляется при помощи объектно-ориентированного моделирования или распознавания элементов.

Вдобавок, компьютер может использоваться для того, чтобы выявлять необходимость заказа исходных материалов и покупных деталей, а также определять их количество исходя из графика производства. Называется такая деятельность планированием технических требований к материалу (material requirements planning - MRP). Компьютер может также использоваться для контроля состояния станков в цехе и отправки им соответствующих заданий.

Автоматизированное конструирование (computer-aided engineering - CAE) - это технология, состоящая в использовании компыотерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации его конструкции. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических расчетов, например, способны определять траектории движения и скорости звеньев и механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Программы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей.

По всей видимости, из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite - element method - FEM). С его помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.

Как отмечалось ранее, для использования метода конечных элементов нужна абстрактная модель подходящего уровня, а не сама конструкция. Абстрактная модель отличается от конструкции тем, что она формируется путем исключения несущественных деталей и редуцирования размерностей. Например, трехмерный объект небольшой толщины может быть представлен в виде двумерной оболочки. Модель создается либо в интерактивном режиме, либо автоматически. Готовая абстрактная модель разбивается на конечные элементы, образующие аналитическую модель. Программные средства, позволяющие конструировать абстрактную модель и разбивать ее па конечные элементы, называются препроцессорами (preprocessors). Проанализировав каждый элемент, компьютер собирает результаты воедино и представляет их в визуальном формате. Например, области с высоким напряжением могут быть, выделены красным цветом. Программные средства, обеспечивающие визуализацию, называются постпроцессорами (postprocessors).

Существует множество программных средств для оптимизации конструкций. Хотя средства оптимизации могут быть отнесены к классу САЕ, обычно их рассматривают отдельно. Ведутся исследования возможности автоматического определения формы конструкции путем объединения оптимизации и анализа. В этих подходах исходная форма конструкции предполагается простой, как, например, у прямоугольного двумерного объекта, состоящего из небольших элементов различной плотности. Затем выполняется процедура оптимизации, позволяющая определить конкретные значения плотности, позволяющие достичь определенной цели с учетом ограничений на напряжения. Целью часто является минимизация веса. После определения оптимальных значений плотности рассчитывается оптимальная форма объекта. Она получается отбрасыванием элементов с низкими значениями плотности.

Замечательное достоинство методов анализа и оптимизации конструкций заключается в том, что они позволяют конструктору увидеть поведение конечного продукта и выявить возможные ошибки до создания и тестирования реальных прототипов, избежав определенных затрат. Поскольку стоимость конструирования на последних стадиях разработки и производства продукта экспоненциально возрастает, ранняя оптимизации и усовершенствование (возможные только благодаря аналитическим средствам САЕ) окупаются значительным снижением сроков и стоимости разработки.

Таким образом, технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризованного

интегрированного производства (computer - integrated manufacturing - С/М). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и CAE. С1М часто называют философией бизнеса, а не компьютерной системой.

Наконец, системы управления инженерными данными (PDM - Product Data Management) обеспечивают хранение и управление проектно-конструкторской документации разрабатываемых изделий, ведение изменений в документации, сохранение истории этих изменений и т. п.

Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается интеграцией в рамках предприятия. Мировой рынок обособленных CAD/CAM решений уже насыщен, системы близки по функциональности, и темпы роста этого сегмента рынка минимальны. По этой причине происходит усиление интеграции систем CAD/CAM/CAE с системами PDM, которые позволяют хранить и управлять проектно-конструкторской документацией на разрабатываемые изделия, вносить в документацию изменения, поддерживать хранение истории этих изменений. Распространение функций PDM-систем на все этапы жизненного цикла продукции превращает их в системы PLM (Product Lifecycle Management). Развитие систем PLM обеспечивает максимальную интеграцию процессов проектирования, производства, модернизации и сопровождения продукции предприятия и по сути имеет много общего с концепцией интегрированной поддержки жизненного цикла изделия (CALb-технологии).

CAD - компьютерная помощь в дизайне, проще говоря, программа черчения.
CAM - компьютерная помощь в производстве.
CAE - компьютерная помощь в инженерных расчетах.
GIS - географическая информационная система.
Большую помощь при подготовке данного материала оказала статья Сергея Котова из Томского Политехнического Университета "Обзор рынка САПР и информационных ресурсов сети Интернет" , предоставленная им самим.

Поиск по сайту www.сайт:

Пользовательский поиск

Для начала немного статистики:


Распределение влияния компаний-разработчиков на рынок САПР


Распределение влияния участников рынка систем автоматизированной подготовки производства

T-FLEX CAD

Система параметрического проектирования и черчения T-FLEX CAD является разработкой российской фирмы "Топ Системы". Система обладает следующими основными возможностями: параметрическое проектирование и моделировании; проектирование сборок и выполнение сборочных чертежей; полный набор функций создания и редактирования чертежей; пространственное моделирование, базирующееся на технологии ACIS; параметрическое трёхмерное твёрдотельное моделирование; управление чертежами; подготовка данных для систем с ЧПУ; имитация движения конструкции.
Система T-FLEX CAD попала в обзор за 1997 год лучших САПР.
Разработчик - Топ-Системы, Москва
http://www.tflex.com
http://www.topsystems.ru
- страница о Tflex на моем сайте.

bCAD

bCAD - программный проект, направленный на разработку новых технологий 3D графики и САПР, а также программ для 2D эскизирования и точного черчения, 3D моделирования и фотореалистичного тонирования, программная система 3D моделирования и визуализации для PC. bCAD спроектирован и разработан как универсальное рабочее место проектировщика, позволяющее производить широкий спектр работ в сквозном режиме - от чертежа к объёмной модели и наоборот - от трёхмерного представления к плоским проекциям: для исполнения технической документации, соответствующей требованиям стандартов, для получения реалистичных изображений, подготовки данных для расчётных систем. Сочитает в себе CAD, 3D моделирование и фотореалистичную визуализацию.
Разработчик - ProPro Group, Новосибирск.
http://www.propro.ru

КОМПАС

Один из лидирующих российских продуктов. CAD-система, предназначенная для широкого спектра проектно-конструкторских работ, лёгкая в освоении, удобная в работе и при этом имеющая стоимость, приемлемую для комплексного оснащения российских предприятий, в том числе средних и малых. Позволяет осуществлять двумерное проекти-рование и конструирование, быструю подготовку и выпуск разнообразной чертёжно-конструкторской документации, создание технических текстово-графических документов.
Разработчик - Аскон, Россия.
http://www.asсon.ru/

CADMECH

CADMECH - система проектирования деталей и сборочных единиц на базе AutoCAD.
CADMECH Desktop - трехмерная система проектирования деталей и сборочных единиц на базе Mechanical Desktop.
Разработчик - НПО "Интермех", Минск.
http://www.intermech.host.ru

CADRA

Система двумерного проектирования и черчения для машиностроения.
Разработчик - SofTECH, Inc., США.
http://www.softech.com

CADkey

3D графический пакет для проектирования, твёрдотельного, поверхностного и каркасного моделирования, визуализации и документирования простых и сложных деталей и сборочных единиц. 250000 инсталляций в разных странах.

Разработчик - Baystate Technologies, США.
http://www.cadkey.com
http://www.cadkey.de
http://www.cadkey.lv/ http://www.colla.lv

DesignCAD Pro

Система двумерного и трёхмерного проектирования и моделирования для профессиональных конструкторов и проектировщиков.
Разработчик - ViaGrafix, США.
http://www.viagrafix.com

IronCAD

Система автоматизированного проектирования для машиностроения. Обеспечивает двумерное проектирование и трёхмерное твердотельное моделирование.

Разработчик - Visionary Design Systems, Inc., США.
http://www.ironcad.com

BlueCAD

BlueCAD является 2D/3D CAD - системой для работы на персональных компьютерах.
Разработчик - CADWare, Италия.
http://www.cadware.it

Surface Express

Система поверхностного моделирования.
Разработчик - MCS, Inc., США.
http://www.mcsaz.com

RhinoCeros

Распространённая система NURBS - моделирования.
Разработчик - Robert McNeel & Associates, США.
http://www.rhino3d.com

CADdy

Система CADdy по функциональным возможностям занимает промежуточное положение между системами низкого и высокого уровней. Предназначена для решения комплексных интегрированных технологий от стадии проектирования до стадии производства в таких областях, как:
- архитектура;
- проектирование промышленных установок;
- машиностроение;
- электроника;
- оборудование зданий (отопление, вентиляция, сантехника, электротехника);
- инженерные сети и дороги;
- геодезия, картография.

Разработчик - фирма ZIEGLER-Informatics GmbH, Германия.
http://www.caddy.de
http://www.plaza.ch
http://www.caddy.ru

OmniCAD

Система двумерного проектирования, черчения и трёхмерного поверхностного моделирования.

SolidWorks

Мощный машиностроительный CAD пакет для твёpдотельного пapaметpического моделиpовaния сложных деталей и сборок. Системa констpуиpовaния сpеднего клaссa, бaзиpующaяся нa пapaметpическом геометpическом ядpе Parasolid. Создaнa специaльно для использовaния нa пеpсонaльных компьютеpaх под упpaвлением опеpaционных систем Windows 95 и Windows NT.
Разработчик - SolidWorks Corporation, США.
http://www.solidworks.com
http://www.uscad.com
http://www.delcam.ru ,
http://www.ascon.ru ,
http://www.intersed.kiev.ua/ ,
www.delcam-ural.ru ,
http://www.colla.lv ,
http://www.solidworks.lv/

SolidEdge

SolidEdge является принципиально новой системой автоматизированного конструирования, которая предназначена для разработки сборочных узлов и геометрического моделирования отдельных деталей. Solid Edge разработан специально для конструирования изделий машиностроения. Является системой среднего уровня, которая обеспечивает эффективное объектно-ориентированное параметрическое моделирование в среде Windows. Базируется на ядре геометрического моделирования Parasolid.
Разработчик - Unigraphics Solutions, США.

Cimatron

Cimatron - интегрированная CAD/CAM - система, предоставляющая полный набор средств для конструирования изделий, разработки чертёжно-конструкторской документа-ции, инженерного анализа, создания управляющих программ для станков с ЧПУ. Cimatron удовлетворяет запросам и требованиям самого широкого круга пользователей, работает на различных платформах, в том числе на персональных компьютерах. Пользователями сис-темы в мире являются около 6000 компаний.
Разработчик - Cimatron Ltd., Израиль.

VISI - Series

Развитая CAD/CAM - система. Обеспечивает двумерное проектирование и черче-ние, трёхмерное поверхностное и твердотельное моделирование, генерацию программ для станков с ЧПУ, визуализацию обработки детали.
Разработчик - Vero International, Inc., США.
http://www.veroint.com
http://www.verosoftware.com

HELIX

HELIX Design System - развитая САПР для двумерного и трёхмерного проектирования в машиностроении, дизайне и других отраслях. Позволяет осуществлять двумерное проектирование, трёхмерное каркасное, поверхностное и твердотёльное моде-лирование.
Разработчик - MicroCADAM Ltd., Великобритания.
http://www.microcadam.co.uk

Form-Z

Система двумерного проектирования и черчения, трёхмерного поверхностного и твёрдотельного моделирования, визуализации и анимации для профессионального дизайна, визуализации и проектирования.
Разработчик - Autodessys, Inc., США.

Alias¦Wavefront

Распространённые программные продукты двумерного и трёхмерного эскизирования и черчения, трёхмерного поверхностного и твёрдотельного моделирования, визуализации и анимации, для профессионального дизайна и проектирования.
Разработчик - Alias¦Wavefront, Канада.
http://www.aw.sgi.com
http://aliaswavwfront.com

CoCreate

Серия продуктов для проектирования и управления данными проекта: ME10 - проектирование и черчение; SolidDesigner - твердотельное моделирование и управление данными проекта.
Разработчик - CoCreate Software, Inc., Германия.
http://www.cocreate.com

VX VISION

CAD/CAM/CAE система среднего уровня.
Разработчик - Varimetrix Corp., Ltd., США.
http://www.vx.com

CADMAX

CADMAX SolidMaster - система автоматизированного проектирования, обеспечивающая двумерное проектирование, трёхмерное поверхностное и твердотельное моделирование.
Разработчик - CADMAX Corp., США.

BRAVO

Семейство продуктов для проектирования, подготовки конструкторской документации, подготовки производства и управления проектом в машиностроении. Продукты: Bravo XL, Bravo Sheet Metal Fabricator, Bravo NCG, Bravo Frame.
Разработчик - Applicon, Inc., США.
http://www.applicon.com

MicroStation

MicroStation - это профессиональная, высоко производительная система для 2D/3D - автоматизированного проектирования при выполнении работ, связанных с черчением, конструированием, визуализацией, анализом, управлением базами данных и моделированием. Обеспечивает практически неограниченными возможностями проектировщиков и конструкторов на платформах DOS, Windows и компьютерах различных типов.
MicroStation 95 - система коллективной работы, дающая всем участникам группы гарантию взаимного согласования независимо от аппаратного развития платформ.
Разработчик - Bentley, США.

Genius

Продукты Genius являются программным обеспечением для конструирования в машиностроении и создания чертежей с применением Автокада.

Genius Desktop - Объектно-ориентированная система трёхмерного проектирования машиностроительных деталей и сборок на базе Mechanical Desktop. Пакет предлагает дополнительные удобные инструменты для нанесения типовых конструктивных элементов, наполнения конструкции стандартными изделиями в виде твёрдотельных моделей и значительно облегчает работу конструктора при управлении компонентами сборки. Располагает библиотеками стандартных деталей в виде готовых параметрических деталей по целому ряду стандартов.
Genius 14 - это продукт, обеспечивающий высокопроизводительное двумерное автоматизированное проектирование и черчение в области машиностроения в среде AutoCAD R14.
Genius LT 97 - система двухмерного автоматизированного проектирования, предназначенная для создания и оформления машиностроительных чертежей и конструкторской документации на базе AutoCAD LT 97. Genius LT 97 включает в себя стандартные компоненты, автоматизированный интерфейс пользователя, а также ряд функциональных возможностей, повышающих производительность работы в среде AutoCAD LT 97.

Разработчик - Genius CAD-Software GmbH, Германия.

Power Solutions

Семейство продуктов Power Solutions охватывает все этапы производственного цикла:
- PowerShape - Система трёхмерного моделирования.
- PowerMILL - Мощнaя и пpостaя в использовaнии aвтономнaя системa aвтомaтической подготовки упpaвляющих пpогpaмм для 3/4 кооpдинaтной фpезеpной обpaботки нa любом стaнке с ЧПУ изделий, спpоектиpовaнных в любой CAD-системе.
- CopyCAD - система преобразования данных, полученных с координатно-измерительной машины, в компьютерную поверхностную модель.
- PowerINSERT - пакет для контроля точности с помощью 3-координатных измерительных машин.
- ArtCAM Pro - пакет для создания объёмного рельефа на базе плоского рисунка и создания управляющих программ для его мехобработки.
- DUCT 5 - CAD/CAM - система, позволяет проводить моделирование, черчение и подготовку управляющих программ для станков с ЧПУ.

Разработчик - DELCAM Plc., Великобpитaния.

hyperMILL

Пакет, позволяющиё реализовать завершающее технологическое звено в сквозной CAD/CAM/CAE-технологии - подготовка управляющих программ для станков с ЧПУ и изготовление изделий.
Разработчик - Open Mind Software Technologies GmbH, Германия.
http://www.openmind.de
http://www.acad.co.uk
http://www.autodesk.com

EdgeCAM

CAM - система. Решения для фрезерной, поверхностной, токарной и электроэрозионной обработки деталей.
Разработчик - Pathtrace, Великобритания.
http://www.pathtrace.com

ESPRIT

CAD/CAM - система на базе ядра Parasolid.
Разработчик - DP Technology, США.
http://www.dptechnology.com

SolidCAM

Пакет генерации управляющих программ для станков с ЧПУт при обработке деталей, содержащих сложную поверхностную или твердотельную геометрию. Обеспечивает 2,5 и 3-осевую фрезерную обработку, токарную обработку, визуализацию процесса обработки.
Разработчик - CADTECH, Израиль.

MasterCAM

CAD/CAM - система, занимающая лидирующее положение в мире по количеству продаж и инсталляций пакета среди CAD/CAM систем. Обеспечивает каркасное и поверхностное моделирование деталей, визуализацию и документирование простых и сложных деталей и сборочных единиц, разработку управляющих программ для токарной, фрезерной, электроэрозионной обработки на станках с ЧПУ.
Разработчик - CNC Software, США.

PEPS

CAM - система, автоматизированная подготовка фрезерной, токарной, лазерной, электроэрозионной обработки деталей.
Разработчик - Camtek Ltd., Великобритания.
http://www.camtek.co.uk

СПРУТ

Система технологического проектирования.
Разработчик - АО "Спрут-Технология", г.Набережные Челны, Россия.
http://www.sprut.ru

EUCLID3

САПР высокого уровня EUCLID, охватывающая все этапы проектирования, разработана фирмой MATRA DATAVISION, с оборотом более 10 миллиардов долларов США. Фирма занимается разработкой, продажей и сопровождением программного обеспечения CAD/CAM/CAE/PDM и программной среды для создания приложений. Основные продукты фирмы имеют торговые марки: EUCLID, PRELUDE, CAS.CADE. Они предназначены для таких областей, как авиация, космос, автомобилестроение, оборона, электромеханика, промышленный дизайн, атомное машиностроение, инжиниринг, производство товаров широкого потребления и др.
Разработчик - MATRA DATAVISION, Франция. В связи со входом компании MATRA Datavision в консорциум EADS (контрольный пакет акций которого имеет владелец MATRA Datavision Жан-Люк Лагардер) компания стала называться EADS MATRA Datavision

CATIA

CATIА/CADAM Solutions - это полностью интегрированная универсальная CAD/CAM/CAE система высокого уровня, позволяющая обеспечить параллельное проведение конструкторско-производственного цикла CATIA, являясь универсальной системой автоматизированного проектирования, испытания и изготовления, широко применяется на крупных машиностроительных предприятиях во всем мире для автоматизированного проектирования, подготовки производства, реинжиниринга. Число фирм-пользователей CATIA превышает 8 тысяч.

Функции, поддерживаемые CATIA/CADAM Solutions :
- администрирование - планирование, управление ресурсами, инспектирование и документирование проекта;
- самый совершенный моделлинг;
- описание всех механических связей между компонентами объекта и приведение их в состояние пространственного взаимопозиционирования;
- автоматический анализ геометрических и логических конфликтов
- анализ свойств сложных сборок;
- разработанный инструментарий трассировок систем коммуникаций с соблюдением заданных ограничений;
- специализированные приложения для технологической подготовки производства.

Компании DASSAULT SYSTEMES (Франция) и IBM (США) являются совместными разработчиками и распространителями системы автоматизированного проектирования. В последние три года параллельно сосуществуют две CATIA: версии 4 и 5, причем версия 4 - только на рабочих станциях и на ядре DASSAULT SYSTEMES, а версия 5 - и для РС на ядре CASCADE разработки MATRA (http://www.opencascade.com).

Unigraphics

Система Unigraphics является CAD/CAM/CAE - системой высокого уровня. Unigraphics позволяет осуществлять полностью виртуальное проектирование изделий, механообработка деталей сложных форм, имеет полностью ассоциативную базу данных мастер-модели, Unigraphics Solutions , одна из самых быстроразвивающихся компаний, производящих системы автоматизированного проектирования, производства и управления проектами, занимается разработкой, продажей и технической поддержкой программного обеспечения для автоматизации проектирования, производства, инженерного анализа и управления проектами для всех областей промышленности, включая автомобилестроение, авиационную и космическую промышленности, станкостроение, производство товаров народного потребления и т.п.
Серия продуктов Unigraphics Solutions, Inc.: Unigraphics Solutions, Parasolid, Solid Edge, Unigraphics, IMAN, ProductVision, GRIP .
Разработчик - Unigraphics Solutions, Inc., США.

MSC/InCheck

3D QuickFill

Программа, позволяющая на ранних стадиях проектирования изделия провести анализ литья по трёхмерной твёрдотельной модели. Предоставляет конструктору возможность наблюдать процесс заполнения литьевой формы с предоставлением результатов следующим параметрам: временя заполнения пресс-формы; время охлаждения летали; распределение температуры; наличие "раковин"; масса готового изделия.
Разработчик - Advanced CAE Technologies, Inc., США.

DEFCAR

CAD/CAM- система для проектирования и подготовки производства в кораблестроении.
Разработчик - Defcar Ingenieros, S.L., Испания.
http://www.defcar.es
http://www.defcar.com

VUTRAX

Vutrax PCB CAD - система автоматизированного проектирования электронных схем и печатных плат.
Разработчик - Computamation Systems Limited, Великобритания.
http://www.vutrax.co.uk

Protel

Protel PCB CAD - развитая система автоматизированного проектирования электронных схем и печатных плат.
Разработчик - Protel Technology Inc., США.
http://www.protel.com

UNICAM

UNICAM - система автоматизированного проектирования и изготовления электронных схем и печатных плат.
Разработчик - Unicam Software, Inc., США.
http://www.unicam.com

CAD STAR

Развитая система автоматизировации проектирования и изготовления электронных схем и печатных плат.
Разработчик - Zuken-Redag Group, Ltd., Великобритания.
http://www.redac.co.uk

SoftCAD

САПР для двумерного и трёхмерного проектирования в архитектуре и строительстве. Серия продуктов: ArchiTECH.PC, SoftCAD.3D, SoftCAD.2D.
Разработчик - SoftCAD International, США.
http://www.softcad.com

Design WorkShop

Система фотореалистичного трёхмерного моделирования и проектирования в архитектуре.
Разработчик - Artifice, Inc., США.
http://www.artifice.com

REBIS

Серия продуктов автоматизированного 2D/3D проектирования промышленных предприятий.
Разработчик - Rebis, Inc., США.
http://www.rebis.com

CADVANCE

Профессиональная CAD - система для архитекторов, инженеров, проектировщиков в строительстве и архитектуре.
Разработчик - Fit, Inc., США.
http://www.cadvance.com

Planit

Система автоматизированного двумерного и трёхмерного проектирования для профессиональных дизайнеров.
Разработчик - Planit Millenium, США.
http://www.planit.com

LS-DYNA

Разработчик LSTC (Livermore Software Technology Corp.) , коммерческое подразделение всемирно известного ядерного центра LLNL (Lawrence Livermore National Laboratory http://www.llnl.gov), США. Развивается с 1976г. Универсальный расчетный программный комплекс, ориентированный на численное моделирование высоконелинейных и быстротекущих процессов в термомеханических задачах механики деформируемого и жидкого тела. Среди гражданских приложений - краш-тесты, обработка металлов давлением, общие задачи динамической прочности, разрушения, взаимодействия деформируемых консткуций с жидкостями и газами и пр.
http://www.lsdyna.com
http://www.feainformation.com/ - Новости и много ссылок на проблемно-ориентированные сайты по приложениям пакета
http://www.cadfem.ru/ - Сайт генерального дистрибьютора LS-DYNA в СНГ

STAR-CD

Разработчик CD-adapco group , Великобритания. Развивается с 1987г. Многоцелевой тяжелый пакет для решения задач механики жидкостей и газов (CFD), ориентированный на промышленные задачи любой сложности.
http://www.cd.co.uk
http://www.adapco-online.com - Подборка материалов пользовательских конференций, полезных советов
http://www.cfd-online.com/Forum/starcd.cgi - Форум по практическим аспектам применения пакета
http://www.cadfem.ru/ - Сайт генерального дистрибьютора STAR-CD в СНГ

AutoSEA

Разработчик VASCi (Vibro Acoustic Sciences) , США. Тяжелый расчетный пакет виброакустического анализа в области средних и высоких частот.
http://www.vasci.com
http://www.cadfem.ru/ - Сайт генерального дистрибьютора AutoSEA в СНГ

LVMFlow

профессиональная CAM-система компьютерного 3D моделирования литейных процессов позволяющая автоматизировать рабочее место технолога – литейщика и снизить затраты времени и средств на подготовку новых изделий.
http://www.cadinfo.net/ .

По электронным САПР можно порекомендовать следующую страницу: http://www.rodnik.ru/htmls/f_main.htm . Здесь также можно загрузить документацию по этим САПР.

Категории задач, для решения которых чаще всего применяются САЕ (computer aided engineering) системы. Архитектура и принцип работы стандартного САЕ-пакета, основные примеры систем: Salome, ANSYS (Swanson Analysis Systems) и MSC.Nastran, их характеристики.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Появление и последующее развитие технологий высокопроизводительных вычислений было вызвано необходимостью выполнения математических расчетов для различных исследований. Несмотря на то, что методы и алгоритмы этих расчетов не отличаются особой сложностью, объем самих вычислений настолько значителен, что небольшой группе исследователей практически невозможно выполнить их в приемлемые сроки и с должным качеством.

Первые инженерные пакеты были созданы в конце 60-х, начале 70-х годов именно для автоматизации рутинных вычислений. В англоязычной литературе такие пакеты обозначаются аббревиатурой CAE (computer aided engineering), а в России это понятие входит в состав САПР (системы автоматизированного проектирования). Задачи, для решения которых чаще всего применяются CAE-системы, можно разделить на следующие категории:

· прочностные расчеты различных деталей и узлов (расчет упругопластических деформаций и напряжений);

· гидродинамические расчеты (расчет характеристик различных одно- и многофазных течений, а также их эволюция во времени);

· термодинамические расчеты (расчет нагрева и остывания деталей и узлов);

· расчет электрических, магнитных и электромагнитных полей;

· различные комбинации предыдущих типов задач.

архитектура система принцип работа

1. Архитектура и принцип работы стандартного CAE-пакета

В основе большинства CAE-пакетов лежит метод конечных элементов. Идея этого метода заключается в замене непрерывной функции, описывающей изучаемое явление или процесс, дискретной моделью, которая строится на базе множества кусочно-непрерывных функций, определенных на конечном числе подобластей. Каждая такая подобласть конечна и представляет собой часть (элемент) всей области, поэтому их называют конечными элементами . Исследуемая геометрическая область разбивается на элементы таким образом, чтобы на каждом из них неизвестная функция аппроксимировалась пробной функцией. Такое разбиение называется расчетной сеткой .

В качестве примера можно рассмотреть стальной цилиндрический прут, один конец которого помещен в огонь. Фрагмент прута, подверженный действию пламени, активно нагревается. То есть, на его цилиндрической поверхности действует источник тепла. Остальная часть прута нагревается только за счет явления теплопроводности - переноса тепла от горячих участков к более холодным. В самом грубом случае можно разделить прут на две части: с источником тепла на цилиндрической поверхности и с источником тепла в сечении цилиндра, параллельном основанию. Таким образом, одна комплексная (сложная) задача разбивается на две более простые.

Однако, получившиеся задачи всё равно слишком сложны для решения в общем виде, так как их решения представляют собой сложные экспоненциальные зависимости от координат и времени. Для упрощения можно разделить прут на более мелкие фрагменты (элементы), причем в элементах рядом с поверхностью задать выделение тепла во всем их объеме, а не только на границе (при выполнении определенных условий это оправдано), а в остальных элементах, ввиду их малости, искать приближенное решение в виде более простой зависимости (линейной или квадратичной). В этом случае сложная система дифференциальных уравнений для элемента сводится к более простой системе алгебраических уравнений. При таком подходе найти решение для каждой отдельной задачи будет намного проще.

Сложность подобного подхода заключается в необходимости решения большого количества таких упрощенных задач. В современных задачах используются сетки с десятками и сотнями миллионов элементов. Поэтому инженерные пакеты создаются с использованием технологий параллельного программирования, чтобы обеспечить необходимую вычислительную мощность.

Создание хорошей расчетной сетки также представляет собой нетривиальную задачу. Это связано с тем, что реальные детали машин имеют сложную геометрию и необходимо разделить их на такие элементы, чтобы приближенные решения не сильно отличались от точных. Поэтому, кроме самих CAE-пакетов, существует большое число приложений, выполняющих всего одну важную функцию: построение расчетной сетки. В англоязычной литературе подобные приложения называются mesher .

Модуль, отвечающий за решение системы уравнений, соответствующей сформированной сетке, называется решателем (в англоязычной литературе: solver ). Он получает все исходные данные и обрабатывает их на основе реализованных в нем методов.

В настоящее время компьютерное моделирование при помощи CAE-систем составляет значительную долю работы в любом серьезном научном или инженерном проекте. На рынке CAE-систем присутствуют известные коммерческие решения, например, ANSYS, Deform, Simulia (ранее Abaqus) и другие. Стоимость лицензий этих продуктов исчисляется сотнями тысяч и миллионами рублей, однако существуют и CAE-системы, относящиеся к свободному ПО.

Среди свободных CAE-пакетов наиболее известны: Salome, OpenFoam, Elmer. В качестве основных минусов этих пакетов можно отметить непроработанный интерфейс и отсутствие документации, особенно на русском языке. Впрочем, возможность их использования на любом количестве процессоров без каких-либо финансовых затрат на приобретение делает cвободные CAE-системы весьма привлекательными для использования в небольших компаниях и учебных заведениях.

2. Примеры CAE -систем

Salome

Большинство CAE-пакетов представляют собой законченные программные комплексы, содержащие в себе все, что необходимо для выполнения конечно-элементного моделирования. Salome - это платформа, предоставляющая функции предварительной и окончательной обработки задачи (pre-processing и post-processing ), т.е. есть определения геометрии, построения сеток, определение «траектории» вычислений, визуализацию результатов и т.д. В ней отсутствуют самые важные компоненты - решатели, но платформа Salome может расширяться за счет сторонних свободных или коммерческих модулей.

Основное предназначение платформы Salome - это создать некую унифицированную среду, после изучения которой пользователь сможет выполнять обработку исходных и полученных данных в привычной оболочке, вне зависимости от используемого решателя. Существует возможность подключить к данной оболочке решатели ANSYS и других коммерческих пакетов с помощью написания специальных модулей или управляющих сценариев, которые можно писать на языках Python или C++.

Внутренним языком платформы является Python, причем в самой платформе имеется встроенная консоль Python, которая может использоваться для выполнения пользовательских сценариев и автоматизации обработки множества типовых задач (пакетной обработки).

A NSYS

Конечноэлементный пакет. Фирма ANSYS,Inc. в течение 35 лет является одним из лидерhttp://www.ansys.ru/ов САЕ-рынка, разрабатывает и предлагает широкую линейку программных продуктов для автоматизированного инженерного анализа. Основанная г-ном Джоном Свонсоном, первоначально фирма называлась Swanson Analysis Systems, и предалагала только универсальный конечно-элементный комплекс ANSYS. Позднее программа дала имя и самой фирме. На сегодняшний день фирма является лидером рынка расчётных систем как по объёму продаж, так и по количеству используемых по всему миру рабочих мест её програмного обеспечения, и широте линейки и применимости программных продуктов: ANSYS, AutoDYN, CFX, Fluent, ICEM, Maxwell. Это лишь краткий список.

Линейка продуктов ANSYS широка и обеспечивает все нужды расчётчика на всех этапах его работы, начиная с построения или модификации геометрической и сеточной модели, далее переходя к эффективному решению задачи, и заканчивая обработкой, представлением и документированием результатов. ANSYS решает является инструментом для решения задач прочности, теплофизики, электромагнетизма.

MSC.Nastran

Общая характеристика . Главный продукт компании MSC.Software - MSC.Nastran - это лучшая на рынке конечно-элементная программная система. В сфере, где ненадежные результаты могут обернуться миллионами долларов дополнительных расходов на разработку, MSC.Nastran вот уже более 30 лет доказывает свою точность и эффективность. Постоянно развиваясь, он аккумулирует в себе достоинства новейших методик и алгоритмов и поэтому остается ведущей программой конечно-элементного анализа.

MSC.Nastran обеспечивает полный набор расчетов, включая расчет напряженно - деформированного состояния, собственных частот и форм колебаний, анализ устойчивости, решение задач теплопередачи, исследование установившихся и неустановившихся процессов, акустических явлений, нелинейных статических процессов, нелинейных динамических переходных процессов, расчет критических частот и вибраций роторных машин, анализ частотных характеристик при воздействии случайных нагрузок, спектральный анализ и исследование аэроупругости. Предусмотрена возможность моделирования практически всех типов материалов, включая композитные и гиперупругие. Расширенные функции включают технологию суперэлементов (подконструкций), модальный синтез и макроязык DMAP для создания пользовательских приложений.

Наряду с расчетом конструкций MSC.Nastran может использоваться и для оптимизации проектов. Оптимизацию можно проводить для задач статики, устойчивости, установившихся и неустановившихся динамических переходных процессов, собственных частот и форм колебаний, акустики и аэроупругости. И все это делается одновременно путем вариации параметров формы, размеров и свойств проекта. Благодаря своей эффективности алгоритмы оптимизации обрабатывают неограниченное число проектных параметров и ограничений. Вес, напряжения, перемещения, собственные частоты и многие другие характеристики могут рассматриваться либо в качестве целевых функций проекта (этом случае их можно минимизировать или максимизировать), либо в качестве ограничений. Алгоритмы анализа чувствительности позволяют исследовать влияние различных параметров на поведение целевой функции и управлять процессом поиска оптимального решения.

Широкие возможности функции оптимизации MSC.Nastran позволяют использовать его для автоматической идентификации компьютерной расчетной модели и эксперимента. Целевая функция определяется в виде минимизации рассогласования результатов расчета и эксперимента, варьируемыми параметрами выбираются наименее достоверные расчетные параметры конструкции. Как результат оптимизации MSC.Nastran выдает новую компьютерную модель, полностью соответствующую экспериментальной модели. MSC.Nastran - единственная из конечно-элементных программ, способная делать это автоматически.

MSC.Nastran также включает уникальную функцию оптимизации конструкции с неограниченными изменениями ее геометрической формы (изменение геометрической топологии объекта) при минимизации веса и удовлетворении граничным условиям по прочности. Данная функция позволяет использовать MSC.Nastran для автоматического проектирования силовых схем конструкций, когда на основе объемной массивной заготовки MSC.Nastran автоматически создает ажурную оптимальную конструкцию, максимально удовлетворяющую заданным условиям.

Применяется MSC.Nastran также и для планирования экспериментов (определения мест расположения датчиков) и оценки полноты полученных экспериментальных данных.

С помощью MSC.Nastran решаются также задачи моделирования систем управления, систем терморегулирования с учетом их воздействия на конструкцию.

На основе возможностей автоматического рестарта в MSC.Nastran проводятся сложные многошаговые исследования работы конструкции как при изменении условий нагружения, граничных условий и любых других параметров конструкции, так и при переходе от одного вида анализа к другому.

Основу MSC.Nastran составляют отработанная технология элементов и надежные численные методы. Программа позволяет одновременно применять в одной и той же модели h- и p-элементы для достижения точности расчета при минимальных компьютерных ресурсах. Элементы супер высокого порядка аппроксимации - p-элементы - хорошо отражают криволинейную геометрию конструкции и обеспечивают высокую точность при детальном расчете напряжений. Эти элементы автоматически адаптируются к желаемому уровню точности. Численные методы разреженных матриц, используемые при любом типе расчетов, резко повышают скорость вычислений и минимизируют объем требуемой дисковой памяти, что повышает эффективность обработки данных.

Тесная связь MSC.Nastran с MSC.Patran обеспечивает полностью интегрированную среду для моделирования и анализа результатов. Все ведущие производители пре - и постпроцессоров, а также систем автоматизированного проектирования, учитывая неоспоримое лидерство MSC.Nastran на рынке конечно-элементных программных продуктов, предусматривают прямые интерфейсы с этой системой. В результате MSC.Nastran гибко интегрируется в любую имеющуюся у Вас среду проектирования.

MSC.Nastran работает на персональных компьютерах, рабочих станциях и суперкомпьютерах, предусматривает возможности векторной и параллельной обработки данных на ЭВМ, которые поддерживают эти функции.

MSC.Nastran - это:

Эффективность решения больших задач за счет:

· Применения алгоритма обработки "разреженных" матриц

· Автоматической внутренней перенумерации матриц для уменьшения ширины ленты

· Возможности применения "рестарта" с целью использования уже полученных к этому моменту результатов

· Применения алгоритмов параллельных и векторных вычислений

Размещено на Allbest.ru

...

Подобные документы

    Внедрение технологии Computer-to-Plate. Образование печатных элементов на формных пластинах с помощью засветки пластин лазерным лучом и химической обработки. Формовыводные устройства для лазерной записи офсетных печатных форм, их характеристики.

    реферат , добавлен 21.01.2010

    Для решения задач теплопроводности применяют аналитические методы и численный метод. Чаще применяются: метод Фурье, метод источников и операторный метод. Уравнение процесса, удовлетворяющее дифференциальному уравнению теплопроводности и краевым условиям.

    учебное пособие , добавлен 05.02.2009

    Инженерные сети и системы. Структура систем автоматического управления. Структура систем телемеханики, основные функции и задачи. Принцип работы висцинового фильтра, регулятора высокого давления прямого действия. Одоризационная установка капельного типа.

    курсовая работа , добавлен 17.10.2013

    Технические характеристики и показатели оформления издания. Основные понятия о плоской офсетной печати. Разновидности ее форм. Классификация формных пластин для технологии Computer-to-Plate. Выбор оборудования и контрольно-измерительной аппаратуры.

    курсовая работа , добавлен 21.11.2014

    Основные характеристики ротора компрессора К398-21-1Л. Определение собственных частот и форм колебаний. Модальный анализ блочным методом Ланцоша. Статический расчет рабочих колес. Возможности решения контактных задач в программном комплексе ANSYS.

    курсовая работа , добавлен 20.06.2014

    Назначение системы водяного охлаждения. Упаковка и комплектация продукции компании. Внутренняя структура ватерблока. История развития радиаторных систем. Основные характеристики устройства, принцип работы, тестирование. Техническое обслуживание систем.

    курсовая работа , добавлен 13.02.2012

    Основные понятия и определения алгоритма решения изобретательских задач (АРИЗ) как комплексной программы алгоритмического типа, основанной на законах развития технических систем. Классификация противоречий, логика и структура АРИЗ. Пример решения задачи.

    реферат , добавлен 16.06.2013

    Основные виды экономической деятельности, в которых применяются информационные технологии. Особенности технологий мобильного предпринимательства. Роль и место автоматизированных информационных систем в экономике. Информационная модель предприятия.

    контрольная работа , добавлен 19.03.2008

    Системы вытяжной вентиляции с естественным побуждением. Неисправности вентиляционных систем. Схема выпуска канализации из здания. Схема насосной системы отопления, принципы ее работы и причины присоединения расширительного сосуда с обработкой магистрали.

    контрольная работа , добавлен 10.10.2014

    Особливість виготовлення флексографських друкованих форм за технологією Computer to Plate. Аналіз схеми прямого лазерного гравірування. Технологія одержання флексографської друкованої форми при використанні прямого запису зображення на формний матеріал.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама