THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сервопривод (лат.servus - слуга, помощник; следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.

Сервопривод чаще всего встречается в робототехнике. Без него невозможно обойтись, особенно когда речь идет о решении задачи точного перемещения грузов или предметов. Такая задача возникает при выполнении какой-либо механической работы (покраска, сварка, шлифовка, перемещение изделий на конвейере и т. д.). Выполняют такую работу манипуляторы, которые выглядят как механические руки. Собственно говоря, знаменитая промышленная робототехника, которая используется для автоматизации производства по всему миру, представлена прежде всего манипуляторами. И не один такой манипулятор не обходится без сервоприводов, которые приводят в действие его звенья. Почему?

Все дело в свойствах сервопривода. Сервопривод — это привод, в котором используется отрицательная обратная связь, позволяющая точно управлять параметрами движения исполнительного(выходного) звена привода (чаще всего это выходной вал). Для создания такой обратной связи обычно используется датчик положения выходного звена сервопривода, но могут применяться и датчики скорости, усилия и т. д. Получается, что сервопривод — это привод, на который подается сигнал, указывающий выдвинуться или повернуться в определенное положение. Он в это положение устанавливается и «ждет», пока не поступит команда об изменении положения. Например, подается сигнал об установке вала в угловое положение 90 градусов. Вал поворачивается в это положение и держит его, пока не придет сигнал о новом положении. Такие возможности управления серьезно отличают сервопривод от обычного мотор-редуктора, который способен только непрерывно вращаться, пока на него подано напряжение. В результате, если такими приводами оснащен робот, то он может двигаться подобно руке человека и выполнять всю ту работу, которую можем выполнять мы.

Разновидностей сервоприводов в промышленности многоВ этой статье мы будем рассматривать электрические сервоприводы вращательного действия. Проще говоря, у таких сервоприводов выходным исполнительным звеном является вращающийся вал. Для простоты мы рассмотрим устройство хобби-сервопривода SG-90 (рис. 1), который активно применяется для создания учебных моделей роботов и прочих плавающих, летающих или ходящих механизмов. Хобби-сервопривод в отличие от промышленного существенно меньше по размерам, развивает меньшее усилие, по-другому управляется, но по общему принципу действия абсолютно идентичен промышленному собрату.

Рисунок 1

Устройство хобби-сервопривода показано на рисунке 2. В его состав входит электродвигатель, редуктор с набором шестеренок, потенциометр (выполняет функцию датчика положения для обратной связи), электронная плата управления электродвигателем и корпус, в который заключено все содержимое. На этом же рисунке показан провод, посредством которого сервопривод питается и управляется. Он состоит из 3-х жил: питание «плюс», питание «минус» и провод, на который подается управляющий сигнал. На разных моделях хобби-сервоприводов провода могут иметь разный цвет. Но практически всегда провод питания «плюс» окрашен в красный цвет, а провод питания «минус» - в черный. В отношении же сигнального провода (для передачи управляющего сигнала) четких цветовых стандартов нет. У разных производителей сервоприводов сигнальный провод может быть белым, оранжевым или желтым.

Рисунок 2

Для управления такими двигателями принят стандарт управляющего сигнала. Он представляет собой постоянно повторяющиеся импульсы или, как мы говорим, череду импульсов (Рис. 3). Частота этих импульсов все время остается постоянной и составляет 50 Гц. Получается, что временной период импульсов (время между передними фронтами соседних импульсов) составляет 1с/50 = 0,02 секунды, т. е. 20 миллисекунд.

Рисунок 3

Что интересно, угловое положение выходного вала сервопривода задается продолжительностью подаваемого импульса. Для пояснения на рисунке 4 показано приблизительное соотношение ширины импульса во временных координатах и угла поворота вала сервопривода. Управление поворотом вала сервопривода выполняется с помощью импульсов продолжительностью от 1 до 2 мс (миллисекунд).

Рисунок 4

Как видно из графика, для управления сервоприводом используется не что иное как сигнал с широтно импульсной модуляцией - ШИМ. Что такое ШИМ можно узнать из соответствующей статьи на нашем сайте.

А как ширина импульса превращается в угол вала на выходе?

Как указано на рисунке 2, в корпусе сервопривода присутствует еще и электронный модуль управления мотором. Подаваемый на сервопривод сигнал попадает на эту плату. А вот то, что происходит с этим сигналом дальше, показано на блок-схеме рисунок 5, которую мы проанализируем поэтапно. Каждый этап изображен прямоугольником или кружочком и пронумерован. Внутри этих прямоугольников изображены устройства, на которых происходит преобразование или обработка сигнала.

Рисунок 5

Итак, входной управляющие сигнал Sупр с ШИМ модуляцией приходит на специальную микросхему с логическими элементами, с помощью которой преобразуется в напряжение Uупр (этап №1). После этого сигнал Uупр (управляющее напряжение) поступает на элемент сравнения напряжений. Данный элемент называется сумматором, но на самом деле он из входного сигнала Uупр вычитает напряжение Uобр (напряжение обратной связи), приходящее через обратную связь с переменного резистора (этап №2).

Получившаяся разница Uкорр (корректирующее напряжение) усиливается встроенным усилителем (этап №3) и подается на электродвигатель. Мотор вращается (этап №4) и приводит в движение выходной вал сервопривода, а вместе с ним и датчик обратной связи в виде потенциометра. При вращении ручки потенциометра изменяется напряжение и получается, что поворот вала преобразуется в напряжение Uобр (этап №5). Это напряжение Uобр сравнивается (снова этап №2) с напряжением Uупр, и разница в виде Uкорр снова идет на усилитель (этап №3) и так далее. Сигнал «ходит» по цепи с обратной связью до тех пор, пока не выполнится соотношение Uупр = Uобр. Тогда Uкорр станет равно 0, и двигатель остановится. Произойдет это тогда, когда вал сервопривода займет положение, соответствующее входному управляющему сигналу Sупр.

Обобщим все сказанное. Вал сервопривода механически соединен с ручкой потенциометра. Из-за этого вместе с поворотом вала сервопривода поворачивается потенциометр, в результате чего изменяется его сопротивление и выходное напряжение Uобр. Соответственно, выходное напряжение с потенциометра Uобр прямо зависит от угла поворота сервопривода. Одновременно входной в сервопривод сигнал Sупр с продолжительностью импульсов от 0,001 до 0,002 секунды задает уровень напряжения Uупр, которое определяет угол на который должен повернуться вал сервопривода. Остановка электродвигателя в момент, когда вал сервопривода именно в нужном положении, достигается за счет вычитания из сигнала Uупр сигнала обратной связи Uобр. А усилитель этапа №3 необходим для того, чтобы на электродвигатель подавалось усиленное напряжение и двигатель переводил вал сервопривода в заданное положение максимально быстро.

Примеры управления серводвигателем

Как было сказано выше, для управления серводвигателем приминяется ШИМ с определенными параметрами. Сгенерировать такую ШИМ можно различными способами. Покажем некоторые из них.

1. Управление серводвигателем при помощи 555 таймера . Микросхема таймера 555 может работать в режиме генератора импульсов (подробнее об этой микросхеме читайте соответствующую статью). Следовательно можно подобрать такие параметры работы этой микросхемы, что бы она выдавала нужные нам импульсы. Путем изменения скважности этих импульсов, т. е. изменения продолжительности импульсов от 0,001 до 0,002 секунды, мы и будем задавать угол поворота вала сервопривода.

Для того чтобы реализовать ШИМ сигнал, необходимо использовать схему с регулируемой скважностью импульсов при неизменной частоте 50 Гц. Параметры компонентов на схеме (рис.6) подобраны таким образом, чтобы обеспечить эти условия. Но чтобы сигнал управления удовлетворял всем условиям, его необходимо инвертировать. Транзистор в схеме необходим именно для этого. Чтобы управлять скважностью в заданных пределах, потребовался бы потенциометр на максимальное сопротивление 20 кОм. Мы будем использовать два потенциометра по 10 кОм (так как именно такие потенциометры используются в Основном наборе 1-ого уровня Эвольвектор , где эта схема подробно описана. Рабочий ход серводвигателя составляет 180 градусов. В этом случае при вращении ручки одного потенциометра сервопривод будет поворачиваться на 90 градусов, а при дополнительном вращении другого — на вторые 90 градусов.

Рисунок 6

Более подробно изучить данную схему, а так же собрать ее, вы сможете купив Основной набор 1-ого уровня Эвольвектор .

2. Управление серводвигателем при помощи контроллера. Сгенерировать нужный сигнал ШИМ так же можно при помощи контроллера. Например можно использовать программируемый контроллер на платформе Ардуино. Чтобы максимально упростить программирование алгоритма управления серводвигателем (генерацию ШИМ) применяются заранее написанные программы, называемые библиотеками. Их сложный программный код скрыт от пользователя, предлагается только вызов нужных нам функций посредством коротких команд при подключении библиотеки к нашей основной программе. Все это делает сложное с алгоритмической точки зрения управление такими устройствами как серводвигатель крайне простым и удобным.

Схема подключения, а так же Скетч (программа) для управления серводвигателем контроллером Arduino показаны на рисунке 7.

Рисунок 7

ВНИМАНИЕ: Подключение питания серводвигателя к плате напрямую, как в нашем примере (рисунок 7), нежелательно. У нас на рисунке подключен один серводвигатель из категории «мини», потребляющий очень небольшие токи, отчего он вполне штатно работает, питаясь непосредственно от платы. Сервопривод стандартного размера требует большей мощности, что может привести к перегреву и повреждению контроллера. Подключение питания двигателей следует осуществлять только через отдельный источник, особенно если предполагается управление одновременно несколькими сервоприводами.

#include <Servo .h> - эта команда означает подключение библиотеки для управления сервоприводом. Эта библиотека присутствует на диске Эвольвектор, который поставляется совместно с нашими наборами 2-ого уровня. Так же её можно найти в интернете и положить в папку «libraries» вашей Arduino IDE.
Подключенная нами библиотека имеет большое количество команд, мы рассмотрим только те, который используются в программе.

Servo dvig ; - это объявление переменной специального типа. dvig - это переменная (название выбираем произвольно). Servo - это тип переменной (специальный тип, который задается в присоединенной библиотеке). Можно задать до 12 переменных этого типа, то есть для управления 12 серво-приводами. Иными словами, этой командой мы сообщили плате, что у нас есть сервопривод, который мы назвали dvig .
dvig.attach (9); - эта команда означает, что серво-привод (dvig ) присоединен к 9 пину (выводу).
dvig.write (90) ; - эта команда заставляет сервопривод (dvig ) повернуться в среднее положение (90 градусов).
dvig.write (0) ; - поворачивает сервопривод в положение 0 градусов.
dvig.write (180) ; - поворачивает сервопривод в положение 180 градусов.

Что означают остальные строки в программе вы можете найти на страницах нашего сайта или узнать из учебных пособий которые входят в состав

Сервоприводы и механизмы оснащены датчиком, который отслеживает определенный параметр, например усилие, положение или скорость, а также управляющий блок в виде электронного устройства. Задачей этого устройства является поддержание необходимых параметров в автоматическом режиме во время функционирования устройства, в зависимости от вида поступающего сигнала от датчика в определенные периоды времени.

Устройство и работа

От обычного электродвигателя сервопривод отличается тем, что можно задать точное положение вала в градусах. Сервоприводы – это любые механические приводы, которые включают в себя датчик некоторого параметра и блок управления, который способен автоматически поддерживать требуемые параметры, соответствующие определенным внешним значениям.

1 — Шестерни редуктора
2 — Выходной вал
3 — Подшипник
4 — Нижняя втулка
5 — Потенциометр
6 — Плата управления
7 — Винт корпуса
8 — Электродвигатель постоянного тока
9 — Шестерня электродвигателя

Для преобразования электрической энергии в механическое движение, необходим . Приводом является редуктор с электродвигателем. Редуктор требуется для снижения скорости двигателя, так как скорость слишком большая для применения. Редуктор состоит из корпуса, в котором расположены валы с шестернями, способными преобразовывать и передавать крутящий момент.

Путем запуска и останова электродвигателя можно приводить в движение выходной вал редуктора, который связан с шестерней сервопривода. К валу можно присоединять устройство или механизм, которым требуется управлять. Кроме этого для контроля положения вала требуется наличие датчика обратной связи. Этот датчик может преобразовать угол поворота снова в сигнал электрического тока.

Такой датчик получил название энкодера. В качестве энкодера может применяться потенциометр. Если бегунок потенциометра поворачивать, то будет изменяться его сопротивление. Значение этого сопротивления прямо пропорционально зависит от угла поворота потенциометра. Таким образом, есть возможность добиться установки определенного положения механизма.

Кроме выше названного потенциометра, редуктора и электродвигателя, сервоприводы оснащены электронной платой, которая обрабатывает поступающий сигнал внешнего значения параметра от потенциометра, сравнивает, и в соответствии с результатом сравнения запускает или останавливает электродвигатель. Другими словами эта электронная начинка отвечает за поддержку отрицательной обратной связи.

Подключение сервопривода осуществляется тремя проводниками, два из которых подают питание напряжением электродвигателя, а по третьему проводнику поступает сигнал управления, с помощью которого выполняется установка положения вала двигателя.

Кроме электродвигателя, играть роль привода может и другой механизм, например пневматический цилиндр со штоком. В качестве датчика обратной связи применяют также датчики поворота угла, либо . Управляющий блок является сервоусилителем, индивидуальным инвертором. Он может содержать также и датчик сигнала управления.

При необходимости создания плавного торможения или разгона для предотвращения чрезмерных динамических нагрузок двигателя, выполняют схемы более сложных микроконтроллеров управления, которые могут контролировать позицию рабочего элемента намного точнее. Подобным образом выполнено устройство привода установки позиции головок в компьютерных жестких дисках.

Виды сервоприводов

При необходимости создания управления несколькими группами сервоприводов используют контроллеры с ЧПУ, которые собраны на схемах программируемых логических контроллеров. Такие сервоприводы способны обеспечить крутящий момент 50 Н*м, мощностью до 15 киловатт.

Синхронные способны задать скорость вращения электродвигателя с большой точностью, так же как ускорение и угол поворота. Синхронные виды приводов могут быстро достигать номинальной скорости вращения.

Асинхронные способны точно выдерживать скорость даже на очень низких оборотах.

Сервоприводы принципиально разделяют на электромеханические и электрогидромеханические . Электромеханические приводы состоят из редуктора и электродвигателя. Но их быстродействие оказывается намного меньше. В электрогидромеханических приводах движение создается путем движения поршня в цилиндре, вследствие чего быстродействие оказывается на очень высоком уровне.

Характеристики сервоприводов

Рассмотрим основные параметры, которые характеризуют сервоприводы:

  • Усилие на валу . Этот параметр является крутящим моментом. Это наиболее важный параметр сервопривода. В паспортных данных чаще всего указывается несколько значений момента для разных величин напряжения.
  • Скорость поворота также является важной характеристикой. Она указывается в эквиваленте времени, необходимом для изменения позиции выходного вала привода на 60 градусов. Этот параметр также могут указывать для нескольких значений напряжения.
  • Тип сервоприводов бывает аналоговый или цифровой.
  • Питание . Основная часть сервоприводов функционирует на напряжении 4,8-7,2 вольта. Питание подается чаще всего по трем проводникам: белый – сигнал управления, красный – напряжение работы, черный – общий провод.
  • Угол поворота – это наибольший угол, на который выходной вал способен повернуться. Чаще всего этот параметр равен 180 или 360 градусов.
  • Постоянного вращения . При необходимости обычный сервопривод можно модернизировать для постоянного вращения.
  • Материал изготовления редуктора сервоприводов бывает различным: карбон, металл, пластик, либо комбинированный состав. Шестерни, выполненные из пластика, не выдерживают ударных нагрузок, однако обладают высокой износостойкостью. Карбоновые шестерни намного прочнее пластмассовых, но имеют высокую стоимость. Шестерни из металла способны выдержать значительные нагрузки, падения, но имеют низкую износостойкость. Выходной вал редуктора устанавливают по-разному на разных моделях: на втулках скольжения, либо на шариковых подшипниках.


Преимущества
  • Легкость и простота установки конструкции.
  • Безотказность и надежность, что важно для ответственных устройств.
  • Не создают шума при эксплуатации.
  • Точность и плавность передвижений достигается даже на малых скоростях. В зависимости от поставленной задачи разрешающая способность может настраиваться работником.
Недостатки
  • Сложность в настройке.
  • Повышенная стоимость.

Применение

Сервоприводы в настоящее время используются достаточно широко. Так, например, они применяются в различных точных приборах, промышленных роботах, автоматах по производству печатных плат, станках с программным управлением, различные клапаны и задвижки.

Наиболее популярными стали быстродействующие приводы в авиамодельном деле. Серводвигатели имеют достоинство в эффективности расхода электрической энергии, а также равномерного движения.

В начале появления серводвигателей использовались коллекторные трехполюсные моторы с обмотками на роторе, и с постоянными магнитами на статоре. Кроме этого, в конструкции двигателя был узел с коллектором и щетками. Далее, по мере технического прогресса число обмоток двигателя увеличилось до пяти, а момент вращения возрос, так же как и скорость разгона.

Следующим этапом развития серводвигателей было расположение обмоток снаружи магнитов. Этим снизили массу ротора, уменьшили время разгона. При этом стоимость двигателя увеличилась. В результате дальнейшего проектирования серводвигателей было решено отказаться от наличия коллектора в устройстве двигателя. Стали применяться двигатели с постоянными магнитами ротора. Мотор стал без щеток, эффективность его возросла вследствие увеличения крутящего момента, скорости и ускорения.

В последнее время наиболее популярными стали сервомоторы, работающие от программируемого контроллера (Ардуино). Вследствие этого открылись большие возможности для проектирования точных станков, роботостроения, авиастроения (квадрокоптеры).

Так как приводы с моторами без коллекторов обладают высокими функциональными характеристиками, точным управлением, повышенной эффективностью, они часто применяются в промышленном оборудовании, бытовой технике (мощные пылесосы с фильтрами), и даже в детских игрушках.

Сервопривод отопления

По сравнению с механической регулировкой системы отопления, электрические сервоприводы являются наиболее совершенными и прогрессивными техническими устройствами, обеспечивающими поддержание параметров отопления помещений.


1 — Блок питания
2 — Комнатные термостаты
3 — Коммутационный блок
4 — Серводвигатели
5 — Подающий коллектор
6 — Обход
7 — Водяной теплый пол
8 — Обратный коллектор
9 — Датчик температуры воды
10 — Циркулярный насос
11 — Шаровый клапан
12 — Регулировочный клапан
13 — Двухходовой термостатический клапан

Привод системы отопления функционирует совместно с термостатом, установленным на стену. Кран с электрическим приводом монтируется на трубе подачи теплоносителя, перед коллектором теплого водяного пола. Далее выполняется подключение питания 220 вольт и настройка терморегулятора рабочего режима.

Система управления оснащается двумя датчиками. Один из них расположен в полу, другой в помещении. Датчики передают сигналы на термостат, управляющий сервоприводом, который соединен с краном. Повысить точность регулировки можно путем установки дополнительного прибора снаружи помещения, так как условия климата непрерывно изменяются, и оказывают влияние на температуру в комнате.

Привод механически соединен с клапаном для его управления. Клапаны могут быть двух- и трехходовыми. Двухходовой клапан может изменять температуру воды в системе. Трехходовой клапан способен поддерживать температуру неизменной, однако изменяет потребление горячей воды, которая подается в контуры. В устройстве трехходового клапана имеется два входа для горячей воды (трубы подачи) и выход обратной воды, через который подается смешанная вода с заданной температурой.

Смешивание воды происходит с помощью клапана. При этом осуществляется регулировка подачи теплоносителя в коллекторы. При открывании одного входа, другой начинает закрываться, а расход воды на выходе не изменяется.

Сервоприводы багажника

В настоящее время современные автомобили чаще всего стали производит с функцией автоматического открывания багажника. Для такой цели применяют рассмотренную нами конструкцию сервопривода. Автопроизводители используют два метода для оснащения такой функцией автомобиля.

Конечно, пневмопривод багажника более надежен, однако его стоимость достаточно высока, поэтому в автомобилях такой привод не нашел применения.

Электрический привод выполняется с разными способами управления:

  • Рукояткой на крышке багажника.
  • Кнопкой на панели двери водителя.
  • С пульта сигнализации.

Открывать багажник вручную не всегда бывает удобным. Например, зимой замок имеет свойство замерзать. Сервопривод дополнительно выполняет функцию защиты автомобиля от чужого проникновения, так как совмещен с устройством замка.

Такие приводы багажника используются на некоторых импортных автомобилях, однако, можно установить такой механизм и на отечественных машинах, было бы желание.

Существуют приводы багажника с магнитными пластинами, однако они не нашли применения, так как их устройство достаточно сложное.

Наиболее приемлемыми по цене являются сервоприводы багажника, которые выполняют только открывание. Функция закрывания для них недоступна. Также можно выбрать конструкцию модели привода, имеющего инерционный механизм. Он играет роль блокировки при появлении препятствия при движении багажника.

Дорогостоящие модели сервоприводов включают в себя механизм подъема и опускания багажника, доводчика механизма запирания, датчиков и контроллера. Обычно их на автомобилях устанавливают на заводе, однако простые конструкции вполне можно монтировать самостоятельно.

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э.Д.С. равная: E = B · l · v, где В - магнитная индукция в месте, где находится проводник, l - активная длина проводника (та его часть, которая находится в магнитном поле), v - скорость перемещения проводника в магнитном поле.

Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором.

Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии. Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем.

Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

Асинхронные двигатели - наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части - конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора - из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.

Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент.

Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f - частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных - квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

Шаговые двигатели

Шаговые двигатели - это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

Двигатели с постоянными магнитами

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48-24 шага на оборот (угол шага 7,5-15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

Гибридные двигатели

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6-0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки - южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8-0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

S = 360/(Nph × Ph) = 360/N,

где Nph - число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph - число фаз,
N - полное количество полюсов для всех фаз вместе.

Сервопривод

Сервопривод - общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод - это комплекс технических средств. Состав сервопривода: привод - например, электромотор, датчик обратной связи - например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты \ сервоусилитель \ инвертор \ servodrive). Мощность двигателей: от 0,05 до 15 кВт.

Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» - ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет.

Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи.

Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт.

Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении.

Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин.

Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

Надежность Шаговые двигатели обладают высокой надежностью, так как в их конструкции отсутствуют изнашивающиеся детали. Рабочий ресурс двигателя зависит только от ресурса примененных в нем подшипников. Большинство современных бесколлекторных сервоприводов от известных производителей (Mitsubishi, Siemens, Omron, Delta) отличаются высокой надежностью, порой сравнимой с надежностью шаговых двигателей, даже несмотря на значительно более сложное устройство сервопривода.
Эффект потери шагов Всем шаговым двигателям присуще свойство потери шагов. Данный эффект проявляется в некотором неконтролируемом смещении траектории перемещения инструмента, от необходимой траектории. При изготовлении простых деталей, имеющих малую длину траектории перемещения инструмента и при невысоких требованиях к изделию, в большинстве случаем данным эффектом можно пренебречь. Но при обработке сложных изделий (пресс-формы, резьба и т. п.), где длина траектории может достигать километров!, данный эффект в большинстве случаев будет приводить к неисправимому браку. Данный эффект проявляется при выходе за допустимые характеристики двигателя, при неправильном управлении двигателем, а также при «проблемах» с механикой. Применение современных технологий управления шаговыми двигателями, с применением современной электроники, позволяет полностью устранить данный эффект, но стоимость возрастает. Эффект потери шагов у сервоприводов полностью отсутствует. Потому, что в каждом сервоприводе имеется датчик положения (энкодер), который постоянно отслеживает положение ротора двигателя и при необходимости выдает команды коррекции положения, на основании которых управляющая электроника, проанализировав данные, полученные с энкодера, вырабатывает необходимые сигналы управления на двигатель. Данный механизм называется обратной связью.
Скорость перемещения При использовании шаговых двигателей в приводах подач в станках с ЧПУ можно добиться скорости 150-300 мм/сек (бывает и больше, но это уже «экзотика»). При максимальных скоростях и при превышении допустимой нагрузки возможно проявление эффекта потери шагов. Приводы подач станков с ЧПУ на основе серводвигателей позволяют достигать высоких скоростей. Скорость холостого перемещения 0,5-1 м/c является нормальным явлением для сервоприводов.
Динамическая точность
(Динамическая точность - максимальное отклонение реальной траектории перемещения инструмента от запрограммированной)
Динамическая точность является определяющей характеристикой при обработке сложноконтурных изделий (пресс-формы, резьба и т. п.). Шаговые двигатели отличаются высокой динамической точностью, которая является следствием принципов работы шагового двигателя. Обычно, на хорошей механике, рассогласование не превышает 20 мкм (1 мкм = 0,001 мм) Высококачественные сервоприводы имеют высокую динамическую точность до 1-2 мкм и выше! (1 мкм = 0,001 мм). Для получения высокой динамической точности необходимо применять сервоприводы, предназначенные для контурного управления, которые точно отрабатывают заданную траекторию.
Стоимость В шаговых двигателях применяются дорогостоящие редкоземельные магниты, а также ротор и статор изготавливаются с прецизионной точностью, и поэтому по сравнению с общепромышленными электродвигателями шаговые двигатели имеют более высокую стоимость. Применение дорогостоящего датчика положения ротора, а также применение достаточно сложного блока управления обуславливает значительно более высокую стоимость, чем у шагового двигателя.
Стоимость систем для создания момента в 2 Нм Гибридный шаговый двигатель с шагом 1,8° - 12 000 р. Привод с энкодером обеспечивающий шаг в 0,036°, максимальную скорость 3 000 об/мин - 12 704 р.
Блок управления - 9 600 р. Блок управления - 13 000 р.
Ремонтопригодность У шагового двигателя может выйти из строя только обмотка статора, а ее замену может произвести только производитель двигателя, так как если двигатель даже только разобрать и снова собрать, он уже не будет работать! Потому, что при разборке двигателя происходит разрыв магнитных цепей внутри двигателя и происходит размагничивание магнитов. Поэтому после сборки двигателя требуется намагничивание внутренних магнитов на специальной установке. Поврежденный серводвигатель в большинстве случаев проще заменить, чем ремонтировать. Ремонту в основном подвергают только мощные двигатели, имеющие весьма высокую стоимость.
Столкновение с препятствием Столкновение подвижных узлов станка с препятствием, в результате которого происходит остановка шагового двигателя, не взывает у него каких-либо повреждений. В станке на базе сервоприводов, при столкновении подвижных узлов с препятствием, управляющая электроника определяет, что произошло повышение нагрузки и для компенсации повышенной нагрузки повышает уровень тока, подаваемый на двигатель. При полной принудительной остановке на серводвигатель подается максимальный ток. Поэтому, если управляющая электроника не отслеживает подобную ситуацию, то возможно сгорание двигателя.
Преимущества
  • Высокие динамические характеристики
  • Отсутствие эффекта потери шагов
  • Высокая перегрузочная способность
Недостатки
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность
  • Возможность эффекта потери шагов
  • Высокая цена, следствие использования сложной системы управления
  • Низкая ремонтопригодность
  • Требуется более бережное отношение к двигателю

Вывод: сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10-12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.

Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода - это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

Что такое шаговый электродвигатель и принцип его работы:

Шаговый электродвигатель - это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники - единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение, пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель - двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигател ь - двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с 2).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Шаговые двигатели Серво двигателя

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Точность перемещений

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

Скорость перемещения

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Разница в цене

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Как и было сказано раньше, шаговый двигатель не может вам дать высокую скорость и мощность и поэтому одно из его применений - в станках ЧПУ недорого сегмента, например фрезерных деревообрабатывающих станках с ЧПУ «АртМастер» 2112, 2515, 3015 базовой комплектации. Данный вид станков на средней скорости покроет большой ассортимент работ: обработки дерева, пластика, ДСП, МДФ, легких металлов и других материалов.

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer» .

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе

Сейчас 43 гостей и ни одного зарегистрированного пользователя на сайте

В работе фрезеров используются два типа двигателя: шаговый – электромеханическое устройство, преобразующее сигналы в угловое перемещение ротора с фиксацией в заданном положении. И серводвигатели – имеющие обратную связь, и которыми можно управлять через цепь контроллера путём увеличения и уменьшения тока. Шаговые имеют меньшую мощность и скорость, и значительно дешевле серводвигателей.

Как правило, шаговый электродвигатель – это электромеханическое устройство, которое преобразует сигналы управления в угловое перемещение его ротора с качественной фиксацией в заданном положении. Сегодня современные шаговые двигатели (ШД), по сути, являются синхронными двигателями, не имеющими пусковую обмотку на роторе, что соответственно объясняется частотным пуском самого ШД. Последовательная активация обмоток двигателя порождает дискретные угловые перемещения (т. е. – шаги) ротора. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению.

Шаговый двигатель относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надежность и весьма внушительный срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.

Сегодня существуют три основных типа/вида шаговых двигателей:

  1. Гибридные двигатели – наиболее часто используемые во фрезерных станках с числовым программным управлением.
  2. Двигатели с постоянными магнитами.
  3. Двигатели, имеющие переменное магнитное сопротивление.

Гибридные шаговые двигатели

Считается, что гибридные двигатели совмещают в себе наилучшие черты ШД с переменным магнитным сопротивлением, а также двигателей с постоянными магнитами. У гибридного двигателя ротор имеет зубцы, которые расположены в осевом направлении. Шаговые гибридные двигатели обеспечивают более меньшую величину шага, большую скорость и больший момент, чем двигатели других типов/видов. Обычно, число шагов для гибридных двигателей может составлять от 100 до 400 (при этом угол шага 3.6 – 0.9о).

Строение шаговых двигателей

Шаговый электрический двигатель состоит из статора, где расположены обмотки возбуждения (т. е. катушки электромагнитов) и соответственно ротора с постоянными магнитами (также используются роторы с переменным магнитным сопротивлением – но реже). ШД с магнитным ротором позволяют обеспечивать фиксацию ротора при обесточенных обмотках и получать больший крутящий момент. Именно благодаря этому, шаговые двигатели достаточно часто применяются в станках с ЧПУ.

Достаточно высокая температура, которая создана в катушках, способна легко рассеяться через массу самого двигателя, таким образом, шаговые электродвигатели от нагрева менее подвержены повреждениям.

Принципы работы шагового двигателя

Как правило, в соответствии с тем, какие именно катушки статора выключены или включены, ротор будет вращаться, чтобы так сказать «подстроиться» к магнитному полю. Например, если представить ШД с двумя катушками в статоре, а в качестве ротора постоянный магнит, то когда соответствующие катушки статора достаточно возбуждены, постоянно намагниченный ротор обязательно повернется, чтобы с магнитным полем статора «выстроиться» в линию. Ротор останется в данном положении, если поле соответственно не вращается.

Когда к этой катушке не будет поступать энергия, а будет направлена непосредственно к следующей катушке, то ротор снова повернется, чтобы подстроиться к полю новоиспеченной позиции. При этом абсолютно каждый поворот обязательно соответствует углу шага, который в свою очередь может измениться от 180о до доли градуса (т. е. до 60о). Затем, в то время когда вторая катушка выключена, включается следующая. Это заставит повернуться ротор на следующий шаг, причем в том же направлении. Данный процесс продолжается до тех пор, пока одна катушка включается, а соответственно другая выключается.

Последовательность шести шагов возвратит ротор в то же состояние, какое было в самом начале последовательности. Теперь если представить, что при завершении первого шага, вместо включения одной катушки и выключения второй – обе катушки были бы включены. В таком случае, ротор повернется только лишь на 30о (т. е. всего на половину от 60о), чтобы выровняться в направлении наименьшего сопротивления. Таким образом, если первая катушка включена, в то время когда вторая выключена, ротор должен повернуться еще на 30о. Называется это действием полушага, что непосредственно включает последовательность восьми движений.

Во время противоположной последовательности выключений/включений, ротор будет совершать обороты в противоположном направлении. В промышленности наиболее применим именно шаговый мотор, который продвигается на угол от 1.8о и до 7.5,о при полном шаге. Для того чтобы размер шагов уменьшить, число полюсов необходимо увеличить. Однако при этом есть физический предел, сколько непосредственно полюсов могут использоваться.

Чтобы снизить дискретность перемещения ротора ШД применяется, как правило – микрошаговый режим. Непосредственно сам микрошаг реализуется при автономном управлении током обмоток шагового двигателя. Управляя соотношением токов находящихся в обмотках, ротор можно зафиксировать между шагами в промежуточном положении. Таким образом, можно увеличить плавность вращения ротора, а также достичь высокой точности позиционирования. Кроме того, в микрошаговом режиме разрешающую способность можно получить в 51200 шаг/об, что положительно отразиться на работе оборудования в целом.

Механическая характеристика шагового двигателя

Очень важной особенностью ШД является, конечно же, их механическая характеристика.

Управление шаговым приводом

Управление шаговым двигателем в самом общем виде сводится к задаче отработать обусловленное число шагов в потребном направлении и с необходимой скоростью.

На блок управления шагового двигателя (т. е. драйвер) подаются определенные сигналы «сделать шаг» - «задать направление». Эти сигналы представляют собой ничто иное как – импульсы 5В.

Данные импульсы можно получить непосредственно от компьютера, к примеру, от LPT-порта, от специализированного контроллера управления шаговыми приводами или же задавать сигналы независимо от генератора 5В или источника питания.

Как правило, работой ШД управляет электронная схема, а его питание выполняется от источника постоянного тока. ШД используют для управления частотой вращения, чтобы не применять дорой контур обратной связи. Данный привод применяется в приводе исключительно с разомкнутой цепью.

Серводвигатели

Серводвигатель – это непосредственно двигатель с обратной связью, которой можно управлять, чтобы или достичь требуемой скорости (следовательно, крутящего момента) или же получить необходимый угол поворота. Именно для этой цели устройство обратной связи посылает определенные сигналы в цепь контроллера серводвигателя, сообщая о скорости и соответственно угловом положении. Если в результате наиболее высоких нагрузок скорость окажется гораздо, ниже требуемой величины, то ток будет увеличиваться покуда скорость не достигнет потребной величины. Когда сигнал скорости показывает, что она больше, чем необходимо, то ток соответственно, уменьшается. Если же по положению применена обратная связь, то сигнал о нем используется, чтобы остановить двигатель в тот момент, когда непосредственно ротор приблизится к необходимому угловому положению.

Для этого могут использоваться разные типы/виды датчиков, включая кодирующие устройства, например, такие как: потенциометры, тахометры и резольверы. Если применяется датчик положения типа кодирующего устройства или потенциометра, его сигнал вполне может быть дифференцирован для того, чтобы выработать определенный сигнал о скорости.

На сегодняшний день сервоприводы используются в высокопроизводительном оборудовании, к примеру, в таких производственных отраслях как: изготовление различных стройматериалов, напитков, упаковки, в полиграфии и подъемно-транспортной технике. Также в последнее время наблюдается тенденция к умножению доли сервоприводов в пищевой промышленности и деревообработке.

Решающим фактором использования сервоприводов является не только высокая их динамика, но и возможность получить высокостабильное или точное управление, широкий диапазон регулирования скорости, малые габариты и вес, а также помехоустойчивость.

Принципы работы серводвигателя

Серводвигатели функционируют вместе с устройствами, которые называются преобразователи (приводы или драйвера серводвигателей). Данные преобразователи меняют напряжение на обмотке возбуждения (или на якоре) сервомотора в зависимости от непосредственной величины напряжения на входе самого двигателя. Вся эта система, как правило, управляется стойкой ЧПУ (СNC). Далее схематично представлена система с сервомотором. Непосредственно под «усилителем» понимается драйвер серводвигателя.

К примеру, в программе, которая заложена в стойке ЧПУ, присутствует особая команда «на расстояние в 10 мм - переместиться по оси Y». На вход драйвера сервомотора со стойки ЧПУ подается определенное напряжение. Серводвигатель начинает вращать ходовой винт, соединенный с энкодером и порталом станка (т. е. перемещаемая часть со шпинделем). При вращении ходового винта энкодер вырабатывает определенные импульсы, которые подсчитывает стойка.

Математическое обеспечение стойки ЧПУ, как правило, устроено таким образом, что стойка «располагает сведениями», что: расстоянию в 10 мм соответствует, к примеру, 10 000 импульсов от энкодера. Следовательно, пока стойка станка не примет эти 10 000 импульсов, то на вход драйвера будет передаваться напряжение задания, то есть будет вырабатываться – рассогласование. Когда портал станка пройдет заданные 10 мм, стойка станка свои 10000 импульсов получает в полном объеме, поэтому напряжение на входе драйвера серводвигателя станет равным (0) «нулю», двигатель остановится, и станок отлично отработает строго 10 мм (причем при абсолютном отсутствии люфтов).

Если под каким-либо воздействием произойдет смещение портала станка – энкодер сразу выдаст импульсы. Данные импульсы будут сосчитаны стойкой, а затем она выдаст напряжение рассогласования непосредственно на драйвер, который повернет якорь двигателя на очень малый угол, чтобы рассогласование равнялось нулю. Таким образом, портал станка отлично удерживается возле заданной ему точки с достаточно высокой точностью.

Также нужно заметить, что далеко не каждый двигатель может поворачиваться на очень малые углы, обеспечивать нужный крутящий момент, динамику разгона и т. д. Это основная причина из-за чего сервоприводы относятся к дорогостоящим устройствам.

Синхронные серводвигатели

Синхронные серводвигатели – трехфазные синхронные электродвигатели с датчиком положения ротора, (т. е. AC-двигатели) и возбуждением от постоянных магнитов. Основным их достоинством является достаточно низкий момент инерции ротора по отношению к крутящему моменту, что в свою очередь позволяет реализовать высокое быстродействие. Всего лишь за десятки миллисекунд достигается разгон на номинальную частоту вращения и реверс с полной скоростью в пределах 1-го оборота вала двигателя.

Как правило, основная область применения данных двигателей является приводы подач станков, а также технологические установки с временным циклом менее 1 секунды (к примеру, быстродействующие позиционные системы самодействующих складов, производство упаковки).

Для сервоприводов характерны такие показатели как:

  • управление по моменту, по скорости или по позиции;
  • статическая точность поддержания скорости непосредственно по валу двигателя не более чем 0,01%;
  • диапазон регулирования скорости более чем в 1:1000;
  • точность поддержания позиции по валу двигателя менее ± 10;
  • компактные размеры и низкий вес:

1 - разъем для подключений;
2 - статор с обмоткой;
3 - датчик скорости и положения;
4 - ротор с магнитами;
5 - электромагнитный тормоз.

  • отсутствие и бесконтактность узлов, требующих обслуживания;
  • достаточно высокое быстродействие;
  • значительная перегрузочная способность по моменту (т. е. кратность предельного момента кратковременно может превысить 3);
  • практически неограниченный диапазон (1:10 000 и более) для регулирования частоты вращения;
  • показатели кпд вентильных двигателей, как правило, превышают 90%, при изменении мощности нагрузки двигателя, при колебаниях напряжения питающей электросети меняются очень несущественно, в отличие от асинхронных электродвигателей, где максимальный кпд не превышает и 86%, а также, напрямую зависит от изменений нагрузки;
  • достаточно низкий перегрев вентильного электродвигателя, потому как на роторе двигателя отсутствует обмотка, что существенно увеличивает его срок службы, работающего в режиме учащенных перегрузок;
  • довольно-таки большая плотность момента на одну единицу массы электродвигателя.

Шаговые двигатели или серводвигатели: выбор двигателей для фрезерно-гравировального станка

Прежде всего, нужно сравнить два вида этих моторов по некоторым параметрам:

Срок службы и обслуживания

Шаговые двигатели – бесщеточные, поэтому единственными изнашиваемыми деталями в конструкции являются подшипники (изначально очень надежная конструкция). Это позволяет считать их двигателями высокой надежности и не требующих обслуживания долгий срок.

Дешевые модели сервоприводов коллекторного типа (со щетками) менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.

Большинство современных бесколлекторных сервоприводов от известных японских производителей отличаются высокой надежностью (близкой к надежности шаговых двигателей).

Порча подшипников происходит очень редко. Может сгореть обмотка статора. Дешевле купить новый двигатель.

Ремонтопригодны только самые дорогие модели. Проще двигатель сразу менять.

Точность перемещений

При хорошей механике точность не ниже +/- 0.01 мм

У высококачественных сервоприводов точность не ниже +/- 0.002 мкм. Такая точность достижима в случае использования сервоприводов контурного управления (точно обрабатывающих заданную траекторию). Нельзя использовать сервопривода для позиционного управления, так как они иногда дают погрешность значительно превышающую, погрешность в шаговых двигателях!

Скорость перемещения, мощность

В гравировально-фрезерных станках используя шаговые двигатели можно добиться скорости 20 – 25 метров в минуту. При увеличении скорости шаговые двигатели сильно теряют в крутящем моменте.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин и более.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Эффект потери шагов при повышении скорости и нагрузки

На скоростях выше номинальных и повышенных нагрузках начинает проявляться эффект потери шагов (смотрите выше график возможной нагрузки от скорости вращения двигателя – механическую характеристику). Потеря шагов возможна также в случае каких либо внешних воздействий: ударов, вибраций, резонансов и т.п.

Современные системы управления шаговыми двигателями позволяют избавиться от этого общего недостатка шаговых двигателей.

Так как сервосистема – это система с обратной связью: в сервомоторе имеется датчик положения, по которому (в случае несоответствия) делается коррекция - то эффекта потери шагов в ней нет.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Ценовой критерий

Шаговые двигатели значительно дешевле серводвигателей, особенно шаговые двигатели китайского производства.

Чисто конструктивно (датчик положение, более сложный, чем у шагового двигателя, драйвер) серводвигатели дороже шаговых. К тому же, я не встречал в своей практике дешевых китайских серводвигателей.

Шаговый двигатель и сервопривод абсолютно не являются конкурентами, так как каждый занимает исключительно свою предопределенную нишу.

Сравнение работы простого Серво и Шагового двигателей:

Для понимания различия между обычным шаговым и серво двигателем давайте рассмотрим работу системы именно с шаговым мотором, на котором непосредственно стоит энкодер (шаговый серводвигатель).

Контроллер выдал команду на какое-то количество шагов – повернуть вал. В обычном шаговом двигателе контроллер не в курсе, насколько конкретно шагов повернулся вал (т. к. у него отсутствует обратная связь). Просто он «считает», что вал повернулся правильно. А ведь бывает, что двигатель не смог повернуть вал или силы не хватило или по другой какой-либо причине. Хотя при этом контроллер четко отсчитал импульсы. Это и есть так называемый пропуск шагов в шаговом двигателе.

В серводвигателе же подобная проблема полностью отсутствует. Контроллер дал команду вал повернуть настолько-то импульсов и ожидает покуда с энкодера придет сигнал, который подтвердит, что вал повернулся на необходимое число импульсов. При этом если с энкодера поступил, хотя бы на 1 импульс меньше, контроллер все равно будет продолжать подавать команду, пока с энкодера не поступит последний импульс, который выровняет соотношение истинного и заданного количества импульсов. Либо же по истечении заданного периода времени, контроллер выдаст специальный сигнал «Ошибка перемещения».

В сервоприводе удержание осуществляется исключительно за счет тока, протекающего непосредственно через обмотку двигателя. При этом в момент удержания половины периода ток поступает в одном направлении, а вторую половину оставшегося времени в ином направлении. Именно за счет этого происходит удержание якоря. В это время по импульсам с энкодера подходит проверка, якорь на месте (на выходе нет ни одного импульса) или же сдвинулся (на выходе энкодера, как правило, появится импульс, вернее код).

Преимущества шагового двигателя:

Шаговые двигатели существенно дешевле, нежели серводвигатели.
- Простота конструкции, а значит и простота ремонта.
- Простота системы управления (подходят практически все программы написанные для CNC станков).

Преимущества серводвигателя:

Бесшумность и плавность работы в некоторых случаях делают сервоприводы единственным возможным вариантом для работы.
- Надежность и безотказность: возможность применения в ответственных устройствах.
- Высокая точность и скорость перемещений доступны также и на низких скоростях.- Способность двигателя может выбираться пользователем непосредственно от того какую конкретно задачу необходимо выполнить.

Выводы:

Ограничением в использовании шаговых двигателей являются мощность и соответственно скорость, однако по практике, их применение целиком оправданно в недорогих станках имеющих систему ЧПУ, предназначенных для обработки дерева, ДСП, МДФ, пластиков, легких металлов и прочих материалов средней скорости, необходимости производителей станков с ЧПУ по точности и по скорости. Если по каким-либо причинам такие параметры не устраивают, то, как правило, используют сервоприводы. Но стоит заметить, что при этом резко и, причем значительно поднимается стоимость конструкции в целом.

Если смотреть с другой стороны, то достичь реальной экономии времени обработки и даже при скоростных сервоприводах, можно за счет экономии на переходах и соответственно оптимизации путей обработки. В остальное же время, скорость весьма ограничена – режимами резки. Между деталью и приводом есть еще и фреза о чем часто забывают.

Достоинства сервопривода таковы, что использовать их можно было бы постоянно, когда только возможно, конечно если бы не два существенных недостатка: цена самого комплекта (т. е. блок управления + сервомотор) и сложность настройки, которая временами делает применение сервопривода совершенно – необоснованным.

В каких случаях необходимы сервоприводы:

  • При скоростных раскроях материала «листового» (скорость перемещения инструмента более чем 25 метров в минуту). Следовательно, в таком случае целесообразно приобретать именно «раскроечный» станок с достаточно мощным шпинделем (до 5 кВт) и с цангой под большой инструмент, с вакуумным столом, с системой удаления стружки и, конечно же, с сервоприводами.
  • При производстве матриц и форм с претензионной точностью изготовления. В данном случае больше всего подходит фрезерный обрабатывающий центр, который можно заказать у компании INTERLASER.

В остальных же случаях наиболее чаще приобретают машины именно с шаговыми двигателями – просто это наиболее практичнее.

Новости

Внимание! Новинка! Высокоточный лазерный станок CCD IL-6090 SGC (с камерой), оснащенный усовершенствованной системой оптического распознавания объектов. Благодаря современному программному обеспечению и высококачественным комплектующим, станок способен самостоятельно распознавать и сканировать необходимые объекты из множества представленных, после чего вырезать их в заданных границах по необходимым параметрам.

Добрый день! Компания INTERLASER, сообщает Вам о огромном поступлении линз, зеркал для лазерного оборудованияЦены самые низкие на линзы и зеркала:Линзы для лазерных станков ZnSe (США):диаметр 20, фокус 2 (50.8 мм) - 3 304 рубдиаметр 20, фокус 5 (12.7 мм) - 3 304 рубдиаметр 25, фокус 2.5 (63.5 мм) - 7 350 руб Линзы для лазеров ZnSe (Китай):диаметр 20, фокус 2 (50.8 мм) - 2 450 рубдиаметр 20, фокус 5 (127 мм) - 2 450 рубдиаметр 25, фокус 2.5 (63.5 мм) - 4 900 руб Зеркала:диаметр 20 мм, толщина 2/3 мм - 840 рубдиаметр 25 мм, толщина 2/3 мм - 980 рубдиаметр 30...

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама